Risks of uncertainty propagation in Al-augmented security pipelines
- URL: http://arxiv.org/abs/2407.14540v1
- Date: Sun, 14 Jul 2024 19:02:20 GMT
- Title: Risks of uncertainty propagation in Al-augmented security pipelines
- Authors: Emanuele Mezzi, Aurora Papotti, Fabio Massacci, Katja Tuma,
- Abstract summary: The use of AI technologies is percolating into the secure development of software-based systems.
No previous work has estimated the uncertainty of AI-augmented systems given the propagation of errors in the pipeline.
We provide the formal underpinnings for capturing uncertainty propagation, develop a simulator to quantify uncertainty, and evaluate the simulation of propagating errors with two case studies.
- Score: 5.692289204193087
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of AI technologies is percolating into the secure development of software-based systems, with an increasing trend of composing AI-based subsystems (with uncertain levels of performance) into automated pipelines. This presents a fundamental research challenge and poses a serious threat to safety-critical domains (e.g., aviation). Despite the existing knowledge about uncertainty in risk analysis, no previous work has estimated the uncertainty of AI-augmented systems given the propagation of errors in the pipeline. We provide the formal underpinnings for capturing uncertainty propagation, develop a simulator to quantify uncertainty, and evaluate the simulation of propagating errors with two case studies. We discuss the generalizability of our approach and present policy implications and recommendations for aviation. Future work includes extending the approach and investigating the required metrics for validation in the aviation domain.
Related papers
- Computational Safety for Generative AI: A Signal Processing Perspective [65.268245109828]
computational safety is a mathematical framework that enables the quantitative assessment, formulation, and study of safety challenges in GenAI.
We show how sensitivity analysis and loss landscape analysis can be used to detect malicious prompts with jailbreak attempts.
We discuss key open research challenges, opportunities, and the essential role of signal processing in computational AI safety.
arXiv Detail & Related papers (2025-02-18T02:26:50Z) - From Aleatoric to Epistemic: Exploring Uncertainty Quantification Techniques in Artificial Intelligence [19.369216778200034]
Uncertainty quantification (UQ) is a critical aspect of artificial intelligence (AI) systems.
This review explores the evolution of uncertainty quantification techniques in AI.
We examine the diverse applications of UQ across various fields, emphasizing its impact on decision-making, predictive accuracy, and system robustness.
arXiv Detail & Related papers (2025-01-05T23:14:47Z) - EARBench: Towards Evaluating Physical Risk Awareness for Task Planning of Foundation Model-based Embodied AI Agents [53.717918131568936]
Embodied artificial intelligence (EAI) integrates advanced AI models into physical entities for real-world interaction.
Foundation models as the "brain" of EAI agents for high-level task planning have shown promising results.
However, the deployment of these agents in physical environments presents significant safety challenges.
This study introduces EARBench, a novel framework for automated physical risk assessment in EAI scenarios.
arXiv Detail & Related papers (2024-08-08T13:19:37Z) - Safetywashing: Do AI Safety Benchmarks Actually Measure Safety Progress? [59.96471873997733]
We propose an empirical foundation for developing more meaningful safety metrics and define AI safety in a machine learning research context.
We aim to provide a more rigorous framework for AI safety research, advancing the science of safety evaluations and clarifying the path towards measurable progress.
arXiv Detail & Related papers (2024-07-31T17:59:24Z) - Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection [0.0]
We consider real-world problems arising in aviation and other safety-critical areas, and investigate their requirements for a certified model.
We establish a new framework towards deep learning certification based on (i) inherently safe design, and (ii) run-time error detection.
arXiv Detail & Related papers (2024-03-12T11:38:45Z) - Safeguarded Progress in Reinforcement Learning: Safe Bayesian
Exploration for Control Policy Synthesis [63.532413807686524]
This paper addresses the problem of maintaining safety during training in Reinforcement Learning (RL)
We propose a new architecture that handles the trade-off between efficient progress and safety during exploration.
arXiv Detail & Related papers (2023-12-18T16:09:43Z) - Building Safe and Reliable AI systems for Safety Critical Tasks with
Vision-Language Processing [1.2183405753834557]
Current AI algorithms are unable to identify common causes for failure detection.
Additional techniques are required to quantify the quality of predictions.
This thesis will focus on vision-language data processing for tasks like classification, image captioning, and vision question answering.
arXiv Detail & Related papers (2023-08-06T18:05:59Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
Safety assurance cases (SACs) can be challenging to maintain during system evolution.
We propose a solution that leverages software traceability to connect relevant system artifacts to safety analysis models.
We elicit design rationales for system changes to help safety stakeholders analyze the impact of system changes on safety.
arXiv Detail & Related papers (2023-07-14T16:03:27Z) - System Theoretic View on Uncertainties [0.0]
We propose a system theoretic approach to handle performance limitations.
We derive a taxonomy based on uncertainty, i.e. lack of knowledge, as a root cause.
arXiv Detail & Related papers (2023-03-07T16:51:24Z) - Towards Safe Policy Improvement for Non-Stationary MDPs [48.9966576179679]
Many real-world problems of interest exhibit non-stationarity, and when stakes are high, the cost associated with a false stationarity assumption may be unacceptable.
We take the first steps towards ensuring safety, with high confidence, for smoothly-varying non-stationary decision problems.
Our proposed method extends a type of safe algorithm, called a Seldonian algorithm, through a synthesis of model-free reinforcement learning with time-series analysis.
arXiv Detail & Related papers (2020-10-23T20:13:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.