論文の概要: Learning Visual Grounding from Generative Vision and Language Model
- arxiv url: http://arxiv.org/abs/2407.14563v1
- Date: Thu, 18 Jul 2024 20:29:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:53:36.841803
- Title: Learning Visual Grounding from Generative Vision and Language Model
- Title(参考訳): 生成的視覚と言語モデルによる視覚的接地学習
- Authors: Shijie Wang, Dahun Kim, Ali Taalimi, Chen Sun, Weicheng Kuo,
- Abstract要約: ビジュアルグラウンドタスクは、自然言語参照に基づいて画像領域をローカライズすることを目的としている。
生成的VLMには基底知識がすでに存在しており、適切なプロンプトによって引き起こすことができる。
本研究は,実世界における視覚的接地を拡大するための生成型VLMの可能性を実証するものである。
- 参考スコア(独自算出の注目度): 29.2712567454021
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual grounding tasks aim to localize image regions based on natural language references. In this work, we explore whether generative VLMs predominantly trained on image-text data could be leveraged to scale up the text annotation of visual grounding data. We find that grounding knowledge already exists in generative VLM and can be elicited by proper prompting. We thus prompt a VLM to generate object-level descriptions by feeding it object regions from existing object detection datasets. We further propose attribute modeling to explicitly capture the important object attributes, and spatial relation modeling to capture inter-object relationship, both of which are common linguistic pattern in referring expression. Our constructed dataset (500K images, 1M objects, 16M referring expressions) is one of the largest grounding datasets to date, and the first grounding dataset with purely model-generated queries and human-annotated objects. To verify the quality of this data, we conduct zero-shot transfer experiments to the popular RefCOCO benchmarks for both referring expression comprehension (REC) and segmentation (RES) tasks. On both tasks, our model significantly outperform the state-of-the-art approaches without using human annotated visual grounding data. Our results demonstrate the promise of generative VLM to scale up visual grounding in the real world. Code and models will be released.
- Abstract(参考訳): ビジュアルグラウンドタスクは、自然言語参照に基づいて画像領域をローカライズすることを目的としている。
本研究では,視覚的接地データのテキストアノテーションをスケールアップするために,画像テキストデータに基づいて主に訓練された生成VLMを活用できるかどうかを考察する。
生成的VLMには基底知識がすでに存在しており、適切なプロンプトによって引き起こすことができる。
したがって、既存のオブジェクト検出データセットからオブジェクト領域をフィードすることで、VLMにオブジェクトレベルの記述を生成するよう促す。
さらに、重要なオブジェクト属性を明示的にキャプチャする属性モデリングと、オブジェクト間の関係をキャプチャする空間関係モデリングも提案する。
構築したデータセット(500K画像,100万オブジェクト,16M参照表現)は,これまでで最大規模の基底データセットの1つである。
このデータの品質を検証するために、表現理解(REC)とセグメント化(RES)の両方のタスクに対して、人気のあるRefCOCOベンチマークに対してゼロショット転送実験を行う。
両タスクにおいて、人間の注釈付き視覚的グラウンドデータを用いることなく、我々のモデルは最先端のアプローチを著しく上回る。
本研究は,実世界における視覚的接地を拡大するための生成型VLMの可能性を実証するものである。
コードとモデルはリリースされる。
関連論文リスト
- GroundVLP: Harnessing Zero-shot Visual Grounding from Vision-Language
Pre-training and Open-Vocabulary Object Detection [24.48128633414131]
画像テキストペアと純粋なオブジェクト検出データから学習した既存のモデルから視覚的グラウンドティング能力を利用するゼロショット手法を提案する。
提案手法は,RefCOCO/+/gデータセットにおいて,他のゼロショット法よりも有意に優れていることを示す。
論文 参考訳(メタデータ) (2023-12-22T20:14:55Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
TSCの既存のPTLMベースモデルは、1)PTLMをコンテキストエンコーダとして採用した微調整ベースモデル、2)テキスト/単語生成タスクに分類タスクを転送するプロンプトベースモデル、の2つのグループに分類される。
我々は,PTLM を TSC に活用する新たな視点として,言語モデリングと文脈的ターゲット属性による明示的ターゲットコンテキスト相互作用の利点を同時に活用する。
論文 参考訳(メタデータ) (2023-12-21T11:45:28Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
OVCOS(Open-vocabulary camouflaged Object segmentation)を導入した。
我々は11,483個の手選択画像とそれに対応するオブジェクトクラスを含む大規模複合シーンデータセット(textbfOVCamo)を構築した。
クラスセマンティック知識の指導とエッジ情報と深度情報からの視覚構造的手がかりの補足を統合することにより、提案手法は効率よくカモフラージュされたオブジェクトを捕捉できる。
論文 参考訳(メタデータ) (2023-11-19T06:00:39Z) - GLaMM: Pixel Grounding Large Multimodal Model [57.91763410032292]
本研究では,対応するオブジェクトセグメンテーションマスクとシームレスに相互作用する自然言語応答を生成可能な最初のモデルであるGrounding LMM(GLaMM)を提案する。
GLaMMはテキストとオプションの視覚的プロンプト(関心領域)の両方を入力として受け入れるほど柔軟である。
提案したGCGタスクは,大規模に自然界に密着した概念を必要とする。
論文 参考訳(メタデータ) (2023-11-06T18:59:57Z) - Towards Grounded Visual Spatial Reasoning in Multi-Modal Vision Language
Models [3.86170450233149]
画像とテキストとのマッチングを訓練した大規模視覚言語モデル(VLM)では,空間的関係の微妙な理解が欠如していることが示されている。
本稿では,空間的節の認識とランク付けのための,よりきめ細かな構成的アプローチを提案する。
論文 参考訳(メタデータ) (2023-08-18T18:58:54Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Dense Video Object Captioning from Disjoint Supervision [77.47084982558101]
本稿では,高密度ビデオオブジェクトキャプションのための新しいタスクとモデルを提案する。
このタスクは、ビデオにおける空間的および時間的局所化を統一する。
我々は、この新しいタスクの強力なベースラインにおいて、我々のモデルがどのように改善されているかを示す。
論文 参考訳(メタデータ) (2023-06-20T17:57:23Z) - Unified Visual Relationship Detection with Vision and Language Models [89.77838890788638]
この研究は、複数のデータセットからラベル空間の結合を予測する単一の視覚的関係検出器のトレーニングに焦点を当てている。
視覚と言語モデルを活用した統合視覚関係検出のための新しいボトムアップ手法UniVRDを提案する。
人物体間相互作用検出とシーングラフ生成の双方による実験結果から,本モデルの競合性能が示された。
論文 参考訳(メタデータ) (2023-03-16T00:06:28Z) - Grounding Visual Representations with Texts for Domain Generalization [9.554646174100123]
相互モダリティの監督は、ドメイン不変の視覚表現の接地に成功することができる。
提案手法は,5つのマルチドメインデータセットの平均性能を1位に評価する。
論文 参考訳(メタデータ) (2022-07-21T03:43:38Z) - Sim-To-Real Transfer of Visual Grounding for Human-Aided Ambiguity
Resolution [0.0]
視覚的接地という課題について考察し, エージェントは, 混み合ったシーンからオブジェクトを抽出し, 自然言語で記述する。
視覚的接地に対する現代の全体論的アプローチは、言語構造を無視し、ジェネリックドメインをカバーするのに苦労する。
実体,属性,空間関係の合成視覚的グラウンド化のための,完全に分離されたモジュラー・フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-24T14:12:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。