Deep Learning-based 3D Coronary Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections
- URL: http://arxiv.org/abs/2407.14616v1
- Date: Fri, 19 Jul 2024 18:18:17 GMT
- Title: Deep Learning-based 3D Coronary Tree Reconstruction from Two 2D Non-simultaneous X-ray Angiography Projections
- Authors: Yiying Wang, Abhirup Banerjee, Robin P. Choudhury, Vicente Grau,
- Abstract summary: Cardiovascular diseases (CVDs) are the most common cause of death worldwide.
Invasive x-ray coronary angiography (ICA) is one of the most important imaging modalities for the diagnosis of CVDs.
ICA typically acquires only two 2D projections, which makes the 3D geometry of coronary vessels difficult to interpret.
We propose a novel deep learning pipeline to correct the non-rigid cardiac and respiratory motions between non-simultaneous projections.
- Score: 1.9929038355503754
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cardiovascular diseases (CVDs) are the most common cause of death worldwide. Invasive x-ray coronary angiography (ICA) is one of the most important imaging modalities for the diagnosis of CVDs. ICA typically acquires only two 2D projections, which makes the 3D geometry of coronary vessels difficult to interpret, thus requiring 3D coronary tree reconstruction from two projections. State-of-the-art approaches require significant manual interactions and cannot correct the non-rigid cardiac and respiratory motions between non-simultaneous projections. In this study, we propose a novel deep learning pipeline. We leverage the Wasserstein conditional generative adversarial network with gradient penalty, latent convolutional transformer layers, and a dynamic snake convolutional critic to implicitly compensate for the non-rigid motion and provide 3D coronary tree reconstruction. Through simulating projections from coronary computed tomography angiography (CCTA), we achieve the generalisation of 3D coronary tree reconstruction on real non-simultaneous ICA projections. We incorporate an application-specific evaluation metric to validate our proposed model on both a CCTA dataset and a real ICA dataset, together with Chamfer L1 distance. The results demonstrate the good performance of our model in vessel topology preservation, recovery of missing features, and generalisation ability to real ICA data. To the best of our knowledge, this is the first study that leverages deep learning to achieve 3D coronary tree reconstruction from two real non-simultaneous x-ray angiography projections.
Related papers
- 3DGR-CAR: Coronary artery reconstruction from ultra-sparse 2D X-ray views with a 3D Gaussians representation [13.829610843207746]
Reconstructing 3D coronary arteries is important for coronary artery disease diagnosis, treatment planning and operation navigation.
Traditional reconstruction techniques often require many projections, while reconstruction from sparse-view X-ray projections is a potential way of reducing radiation dose.
We propose 3DGR-CAR, a 3D Gaussian Representation for Coronary Artery Reconstruction from ultra-sparse X-ray projections.
arXiv Detail & Related papers (2024-10-01T05:00:47Z) - NeCA: 3D Coronary Artery Tree Reconstruction from Two 2D Projections by Neural Implicit Representation [2.1771042711033997]
2D x-ray invasive coronary angiography remains as the most widely adopted imaging modality for CVDs diagnosis.
Due to the radiation limit, in general only two angiographic projections are acquired, providing limited information of the vessel geometry.
We propose a self-supervised deep learning method called NeCA, which is based on implicit neural representation using the multiresolution hash encoder and differentiable cone-beam forward projector layer.
arXiv Detail & Related papers (2024-09-06T20:08:21Z) - 3D Vessel Reconstruction from Sparse-View Dynamic DSA Images via Vessel Probability Guided Attenuation Learning [79.60829508459753]
Current commercial Digital Subtraction Angiography (DSA) systems typically demand hundreds of scanning views to perform reconstruction.
The dynamic blood flow and insufficient input of sparse-view DSA images present significant challenges to the 3D vessel reconstruction task.
We propose to use a time-agnostic vessel probability field to solve this problem effectively.
arXiv Detail & Related papers (2024-05-17T11:23:33Z) - Multi-class point cloud completion networks for 3D cardiac anatomy
reconstruction from cine magnetic resonance images [4.1448595037512925]
We propose a novel fully automatic surface reconstruction pipeline capable of reconstructing multi-class 3D cardiac anatomy meshes.
Its key component is a multi-class point cloud completion network (PCCN) capable of correcting both the sparsity and misalignment issues of the 3D reconstruction task.
arXiv Detail & Related papers (2023-07-17T14:52:52Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - 3D Coronary Vessel Reconstruction from Bi-Plane Angiography using Graph
Convolutional Networks [1.8244763402770727]
3DAngioNet is a novel deep learning (DL) system that enables rapid 3D vessel mesh reconstruction using 2D XCA images from two views.
Our approach learns a coarse mesh template using an EfficientB3-UNet segmentation network and projection geometries, and deforms it using a graph convolutional network.
arXiv Detail & Related papers (2023-02-28T17:46:25Z) - Enforcing connectivity of 3D linear structures using their 2D
projections [54.0598511446694]
We propose to improve the 3D connectivity of our results by minimizing a sum of topology-aware losses on their 2D projections.
This suffices to increase the accuracy and to reduce the annotation effort required to provide the required annotated training data.
arXiv Detail & Related papers (2022-07-14T11:42:18Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z) - A Benchmark for Studying Diabetic Retinopathy: Segmentation, Grading,
and Transferability [76.64661091980531]
People with diabetes are at risk of developing diabetic retinopathy (DR)
Computer-aided DR diagnosis is a promising tool for early detection of DR and severity grading.
This dataset has 1,842 images with pixel-level DR-related lesion annotations, and 1,000 images with image-level labels graded by six board-certified ophthalmologists.
arXiv Detail & Related papers (2020-08-22T07:48:04Z) - Weakly-supervised 3D coronary artery reconstruction from two-view
angiographic images [4.722039838364292]
We propose an adversarial and generative way to reconstruct three dimensional coronary artery models.
With 3D fully supervised learning and 2D weakly supervised learning schemes, we obtained reconstruction accuracies that outperform state-of-art techniques.
arXiv Detail & Related papers (2020-03-26T11:41:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.