The Collection of a Human Robot Collaboration Dataset for Cooperative Assembly in Glovebox Environments
- URL: http://arxiv.org/abs/2407.14649v1
- Date: Fri, 19 Jul 2024 19:56:53 GMT
- Title: The Collection of a Human Robot Collaboration Dataset for Cooperative Assembly in Glovebox Environments
- Authors: Shivansh Sharma, Mathew Huang, Sanat Nair, Alan Wen, Christina Petlowany, Juston Moore, Selma Wanna, Mitch Pryor,
- Abstract summary: Industry 4.0 introduced AI as a transformative solution for modernizing manufacturing processes. Its successor, Industry 5.0, envisions humans as collaborators and experts guiding these AI-driven solutions.
New techniques require algorithms capable of safe, real-time identification of human positions in a scene, particularly their hands, during collaborative assembly.
This dataset provides 1200 challenging examples to build applications toward hand and glove segmentation in industrial human collaboration scenarios.
- Score: 2.30069810310356
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industry 4.0 introduced AI as a transformative solution for modernizing manufacturing processes. Its successor, Industry 5.0, envisions humans as collaborators and experts guiding these AI-driven manufacturing solutions. Developing these techniques necessitates algorithms capable of safe, real-time identification of human positions in a scene, particularly their hands, during collaborative assembly. Although substantial efforts have curated datasets for hand segmentation, most focus on residential or commercial domains. Existing datasets targeting industrial settings predominantly rely on synthetic data, which we demonstrate does not effectively transfer to real-world operations. Moreover, these datasets lack uncertainty estimations critical for safe collaboration. Addressing these gaps, we present HAGS: Hand and Glove Segmentation Dataset. This dataset provides 1200 challenging examples to build applications toward hand and glove segmentation in industrial human-robot collaboration scenarios as well as assess out-of-distribution images, constructed via green screen augmentations, to determine ML-classifier robustness. We study state-of-the-art, real-time segmentation models to evaluate existing methods. Our dataset and baselines are publicly available: https://dataverse.tdl.org/dataset.xhtml?persistentId=doi:10.18738/T8/85R7KQ and https://github.com/UTNuclearRoboticsPublic/assembly_glovebox_dataset.
Related papers
- Testing Human-Hand Segmentation on In-Distribution and Out-of-Distribution Data in Human-Robot Interactions Using a Deep Ensemble Model [40.815678328617686]
We present a novel approach by evaluating the performance of pre-trained deep learning models under both ID data and more challenging OOD scenarios.
We incorporated unique and rare conditions such as finger-crossing gestures and motion blur from fast-moving hands.
Results revealed that models trained on industrial datasets outperformed those trained on non-industrial datasets.
arXiv Detail & Related papers (2025-01-13T21:52:46Z) - Generate to Discriminate: Expert Routing for Continual Learning [59.71853576559306]
Generate to Discriminate (G2D) is a continual learning method that leverages synthetic data to train a domain-discriminator.
We observe that G2D outperforms competitive domain-incremental learning methods on tasks in both vision and language modalities.
arXiv Detail & Related papers (2024-12-22T13:16:28Z) - Efficient Data Collection for Robotic Manipulation via Compositional Generalization [70.76782930312746]
We show that policies can compose environmental factors from their data to succeed when encountering unseen factor combinations.
We propose better in-domain data collection strategies that exploit composition.
We provide videos at http://iliad.stanford.edu/robot-data-comp/.
arXiv Detail & Related papers (2024-03-08T07:15:38Z) - Synthetic Data Generation for Bridging Sim2Real Gap in a Production Environment [0.0]
Domain knowledge is vital in bridging the simulation to reality gap in computer vision applications.
This paper focuses on synthetic data generation procedures for parts and assemblies used in a production environment.
arXiv Detail & Related papers (2023-11-18T11:15:08Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
We present a benchmark that leverages real-world videos with humans removed and synthetic data containing virtual humans to pre-train a model.
We then evaluate the transferability of the representation learned on this data to a diverse set of downstream action recognition benchmarks.
Our approach outperforms previous baselines by up to 5%.
arXiv Detail & Related papers (2023-11-10T18:38:14Z) - Industrial Application of 6D Pose Estimation for Robotic Manipulation in Automotive Internal Logistics [0.4915744683251149]
A large proportion of parts handling tasks in the automotive industry's internal logistics are not automated but still performed by humans.
A key component to competitively automate these processes is a 6D pose estimation that can handle a large number of different parts.
We build a representative 6D pose estimation pipeline with state-of-the-art components from economically scalable real to synthetic data generation.
arXiv Detail & Related papers (2023-09-25T16:23:49Z) - Synthetic-to-Real Domain Adaptation for Action Recognition: A Dataset and Baseline Performances [76.34037366117234]
We introduce a new dataset called Robot Control Gestures (RoCoG-v2)
The dataset is composed of both real and synthetic videos from seven gesture classes.
We present results using state-of-the-art action recognition and domain adaptation algorithms.
arXiv Detail & Related papers (2023-03-17T23:23:55Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Deployment and Evaluation of a Flexible Human-Robot Collaboration Model
Based on AND/OR Graphs in a Manufacturing Environment [2.3848738964230023]
A major bottleneck to effectively deploy collaborative robots to manufacturing industries is developing task planning algorithms.
A pick-and-place palletization task, which requires the collaboration between humans and robots, is investigated.
The results of this study demonstrate how human-robot collaboration models like the one we propose can leverage the flexibility and the comfort of operators in the workplace.
arXiv Detail & Related papers (2020-07-13T22:05:34Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
We present an in-depth analysis of existing deep learning-based methods for modelling social interactions.
We propose two knowledge-based data-driven methods to effectively capture these social interactions.
We develop a large scale interaction-centric benchmark TrajNet++, a significant yet missing component in the field of human trajectory forecasting.
arXiv Detail & Related papers (2020-07-07T17:19:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.