Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming
- URL: http://arxiv.org/abs/2407.14714v1
- Date: Sat, 20 Jul 2024 00:45:03 GMT
- Title: Unveiling the Decision-Making Process in Reinforcement Learning with Genetic Programming
- Authors: Manuel Eberhardinger, Florian Rupp, Johannes Maucher, Setareh Maghsudi,
- Abstract summary: Incomprehensibility is not an option for the use of (deep) reinforcement learning in the real world.
We propose a genetic programming framework to generate explanations for the decision-making process of already trained agents.
We show that we are comparable in performance but require much less hardware resources and computation time.
- Score: 4.249842620609683
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite tremendous progress, machine learning and deep learning still suffer from incomprehensible predictions. Incomprehensibility, however, is not an option for the use of (deep) reinforcement learning in the real world, as unpredictable actions can seriously harm the involved individuals. In this work, we propose a genetic programming framework to generate explanations for the decision-making process of already trained agents by imitating them with programs. Programs are interpretable and can be executed to generate explanations of why the agent chooses a particular action. Furthermore, we conduct an ablation study that investigates how extending the domain-specific language by using library learning alters the performance of the method. We compare our results with the previous state of the art for this problem and show that we are comparable in performance but require much less hardware resources and computation time.
Related papers
- Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback [3.10979520014442]
An increasing level of autonomy of robots poses challenges of trust and social acceptance, especially in human-robot interaction scenarios.
This requires an interpretable implementation of robotic cognitive capabilities, possibly based on formal methods as logics for the definition of task specifications.
We propose an offline algorithm based on inductive logic programming from noisy examples to extract task specifications.
arXiv Detail & Related papers (2025-01-13T17:25:46Z) - Online inductive learning from answer sets for efficient reinforcement learning exploration [52.03682298194168]
We exploit inductive learning of answer set programs to learn a set of logical rules representing an explainable approximation of the agent policy.
We then perform answer set reasoning on the learned rules to guide the exploration of the learning agent at the next batch.
Our methodology produces a significant boost in the discounted return achieved by the agent, even in the first batches of training.
arXiv Detail & Related papers (2025-01-13T16:13:22Z) - A Human-Centered Approach for Improving Supervised Learning [0.44378250612683995]
This paper shows how we can strike a balance between performance, time, and resource constraints.
Another goal of this research is to make Ensembles more explainable and intelligible using the Human-Centered approach.
arXiv Detail & Related papers (2024-10-14T10:27:14Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Explainable Data-Driven Optimization: From Context to Decision and Back
Again [76.84947521482631]
Data-driven optimization uses contextual information and machine learning algorithms to find solutions to decision problems with uncertain parameters.
We introduce a counterfactual explanation methodology tailored to explain solutions to data-driven problems.
We demonstrate our approach by explaining key problems in operations management such as inventory management and routing.
arXiv Detail & Related papers (2023-01-24T15:25:16Z) - Chain of Thought Imitation with Procedure Cloning [129.62135987416164]
We propose procedure cloning, which applies supervised sequence prediction to imitate the series of expert computations.
We show that imitating the intermediate computations of an expert's behavior enables procedure cloning to learn policies exhibiting significant generalization to unseen environment configurations.
arXiv Detail & Related papers (2022-05-22T13:14:09Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
We show how to develop interpretable representations of how agents make decisions.
By understanding the decision-making processes underlying a set of observed trajectories, we cast the policy inference problem as the inverse to this online learning problem.
We introduce a practical algorithm for retrospectively estimating such perceived effects, alongside the process through which agents update them.
Through application to the analysis of UNOS organ donation acceptance decisions, we demonstrate that our approach can bring valuable insights into the factors that govern decision processes and how they change over time.
arXiv Detail & Related papers (2022-03-14T17:40:42Z) - Deep Reinforcement Learning with Stacked Hierarchical Attention for
Text-based Games [64.11746320061965]
We study reinforcement learning for text-based games, which are interactive simulations in the context of natural language.
We aim to conduct explicit reasoning with knowledge graphs for decision making, so that the actions of an agent are generated and supported by an interpretable inference procedure.
We extensively evaluate our method on a number of man-made benchmark games, and the experimental results demonstrate that our method performs better than existing text-based agents.
arXiv Detail & Related papers (2020-10-22T12:40:22Z) - Leveraging Rationales to Improve Human Task Performance [15.785125079811902]
Given a computational system's performance exceeds that of its human user, can explainable AI capabilities be leveraged to improve the performance of the human?
We introduce the Rationale-Generating Algorithm, an automated technique for generating rationales for utility-based computational methods.
Results show that our approach produces rationales that lead to statistically significant improvement in human task performance.
arXiv Detail & Related papers (2020-02-11T04:51:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.