MetaAug: Meta-Data Augmentation for Post-Training Quantization
- URL: http://arxiv.org/abs/2407.14726v2
- Date: Sat, 27 Jul 2024 04:18:22 GMT
- Title: MetaAug: Meta-Data Augmentation for Post-Training Quantization
- Authors: Cuong Pham, Hoang Anh Dung, Cuong C. Nguyen, Trung Le, Dinh Phung, Gustavo Carneiro, Thanh-Toan Do,
- Abstract summary: Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model.
We propose a novel meta-learning based approach to enhance the performance of post-training quantization.
- Score: 32.02377559968568
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Post-Training Quantization (PTQ) has received significant attention because it requires only a small set of calibration data to quantize a full-precision model, which is more practical in real-world applications in which full access to a large training set is not available. However, it often leads to overfitting on the small calibration dataset. Several methods have been proposed to address this issue, yet they still rely on only the calibration set for the quantization and they do not validate the quantized model due to the lack of a validation set. In this work, we propose a novel meta-learning based approach to enhance the performance of post-training quantization. Specifically, to mitigate the overfitting problem, instead of only training the quantized model using the original calibration set without any validation during the learning process as in previous PTQ works, in our approach, we both train and validate the quantized model using two different sets of images. In particular, we propose a meta-learning based approach to jointly optimize a transformation network and a quantized model through bi-level optimization. The transformation network modifies the original calibration data and the modified data will be used as the training set to learn the quantized model with the objective that the quantized model achieves a good performance on the original calibration data. Extensive experiments on the widely used ImageNet dataset with different neural network architectures demonstrate that our approach outperforms the state-of-the-art PTQ methods.
Related papers
- Clipped Uniform Quantizers for Communication-Efficient Federated Learning [3.38220960870904]
This paper introduces an approach to employ clipped uniform quantization in federated learning settings.
By employing optimal clipping thresholds and adaptive quantization schemes, our method significantly curtails the bit requirements for model weight transmissions.
arXiv Detail & Related papers (2024-05-22T05:48:25Z) - PreQuant: A Task-agnostic Quantization Approach for Pre-trained Language
Models [52.09865918265002]
We propose a novel quantize before fine-tuning'' framework, PreQuant.
PreQuant is compatible with various quantization strategies, with outlier-aware fine-tuning incorporated to correct the induced quantization error.
We demonstrate the effectiveness of PreQuant on the GLUE benchmark using BERT, RoBERTa, and T5.
arXiv Detail & Related papers (2023-05-30T08:41:33Z) - Post-training Model Quantization Using GANs for Synthetic Data
Generation [57.40733249681334]
We investigate the use of synthetic data as a substitute for the calibration with real data for the quantization method.
We compare the performance of models quantized using data generated by StyleGAN2-ADA and our pre-trained DiStyleGAN, with quantization using real data and an alternative data generation method based on fractal images.
arXiv Detail & Related papers (2023-05-10T11:10:09Z) - Data Quality-aware Mixed-precision Quantization via Hybrid Reinforcement
Learning [22.31766292657812]
Mixed-precision quantization mostly predetermines the model bit-width settings before actual training.
We propose a novel Data Quality-aware Mixed-precision Quantization framework, dubbed DQMQ, to dynamically adapt quantization bit-widths to different data qualities.
arXiv Detail & Related papers (2023-02-09T06:14:00Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
We study a new vertical-layered representation of neural network weights for encapsulating all quantized models into a single one.
We can theoretically achieve any precision network for on-demand service while only needing to train and maintain one model.
arXiv Detail & Related papers (2022-12-10T15:57:38Z) - CTMQ: Cyclic Training of Convolutional Neural Networks with Multiple
Quantization Steps [1.3106063755117399]
This paper proposes a training method having multiple cyclic training for achieving enhanced performance in low-bit quantized convolutional neural networks (CNNs)
By using better training ability of the accurate model in an iterative manner, the proposed method can produce enhanced trained weights for the low-bit quantized model in each cycle.
Notably, the training method can advance Top-1 and Top-5 accuracies of the binarized ResNet-18 on the ImageNet dataset by 5.80% and 6.85%, respectively.
arXiv Detail & Related papers (2022-06-26T05:54:12Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
We propose a method to train a model for all quantization that supports diverse bit-widths.
We use wavelet decomposition and reconstruction to increase the diversity of weights.
Our method can achieve accuracy comparable to dedicated models trained at the same precision.
arXiv Detail & Related papers (2021-05-04T08:10:50Z) - Zero-shot Adversarial Quantization [11.722728148523366]
We propose a zero-shot adversarial quantization (ZAQ) framework, facilitating effective discrepancy estimation and knowledge transfer.
This is achieved by a novel two-level discrepancy modeling to drive a generator to synthesize informative and diverse data examples.
We conduct extensive experiments on three fundamental vision tasks, demonstrating the superiority of ZAQ over the strong zero-shot baselines.
arXiv Detail & Related papers (2021-03-29T01:33:34Z) - Adaptive Quantization of Model Updates for Communication-Efficient
Federated Learning [75.45968495410047]
Communication of model updates between client nodes and the central aggregating server is a major bottleneck in federated learning.
Gradient quantization is an effective way of reducing the number of bits required to communicate each model update.
We propose an adaptive quantization strategy called AdaFL that aims to achieve communication efficiency as well as a low error floor.
arXiv Detail & Related papers (2021-02-08T19:14:21Z) - Gradient $\ell_1$ Regularization for Quantization Robustness [70.39776106458858]
We derive a simple regularization scheme that improves robustness against post-training quantization.
By training quantization-ready networks, our approach enables storing a single set of weights that can be quantized on-demand to different bit-widths.
arXiv Detail & Related papers (2020-02-18T12:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.