論文の概要: Economy Watchers Survey provides Datasets and Tasks for Japanese Financial Domain
- arxiv url: http://arxiv.org/abs/2407.14727v1
- Date: Sat, 20 Jul 2024 02:35:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 21:14:02.692473
- Title: Economy Watchers Survey provides Datasets and Tasks for Japanese Financial Domain
- Title(参考訳): 経済ウォッチャー調査による日本金融ドメインのデータセットと課題
- Authors: Masahiro Suzuki, Hiroki Sakaji,
- Abstract要約: 中央政府機関が発行する資料を用いて,2つの大規模データセットを構築した。
データセットは3つの日本の金融NLPタスクを提供する。
私たちのデータセットは包括的で最新のように設計されており、自動更新フレームワークを活用しています。
- 参考スコア(独自算出の注目度): 5.9001403107681405
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many natural language processing (NLP) tasks in English or general domains are widely available and are often used to evaluate pre-trained language models. In contrast, there are fewer tasks available for languages other than English and for the financial domain. In particular, tasks in Japanese and the financial domain are limited. We construct two large datasets using materials published by a Japanese central government agency. The datasets provide three Japanese financial NLP tasks, which include a 3-class and 12-class classification for categorizing sentences, as well as a 5-class classification task for sentiment analysis. Our datasets are designed to be comprehensive and up-to-date, leveraging an automatic update framework that ensures the latest task datasets are publicly available anytime.
- Abstract(参考訳): 英語や一般ドメインにおける多くの自然言語処理(NLP)タスクが広く利用可能であり、事前訓練された言語モデルを評価するためにしばしば使用される。
対照的に、英語以外の言語や金融分野のタスクは少ない。
特に日本語や金融分野での業務は限られている。
中央政府機関が発行する資料を用いて,2つの大規模データセットを構築した。
それらのデータセットは、日本語の財務NLPタスクを3つ提供し、文章の分類のための3クラスと12クラスの分類と、感情分析のための5クラスの分類タスクを含む。
私たちのデータセットは包括的で最新のように設計されており、最新のタスクデータセットがいつでも公開されていることを保証する自動更新フレームワークを活用しています。
関連論文リスト
- Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages [105.54207724678767]
データ不足は、多言語NLPシステムの開発において重要な問題である。
我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。
XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
論文 参考訳(メタデータ) (2023-05-19T18:00:03Z) - AnnoLLM: Making Large Language Models to Be Better Crowdsourced Annotators [98.11286353828525]
GPT-3.5シリーズのモデルは、様々なNLPタスクにまたがる顕著な少数ショットとゼロショットの能力を示している。
本稿では,2段階のアプローチを取り入れたAnnoLLMを提案する。
我々はAnnoLLMを用いた対話型情報検索データセットを構築した。
論文 参考訳(メタデータ) (2023-03-29T17:03:21Z) - MULTI3NLU++: A Multilingual, Multi-Intent, Multi-Domain Dataset for
Natural Language Understanding in Task-Oriented Dialogue [115.32009638844059]
英語のみのNLU++データセットを拡張して、手動による翻訳を高、中、低リソース言語に含めます。
Multi3NLU++はそのマルチインテント特性のため、複雑で自然なユーザ目標を表現している。
我々はMulti3NLU++を用いて、インテント検出やスロットラベリングといった自然言語理解タスクに対して、最先端の多言語モデルをベンチマークする。
論文 参考訳(メタデータ) (2022-12-20T17:34:25Z) - Dim Wihl Gat Tun: The Case for Linguistic Expertise in NLP for
Underdocumented Languages [6.8708103492634836]
何百もの未保存言語が、言語ドキュメントの取り組みから、インターリニアグロステキスト(IGT)という形でデータソースを提供している。
ターゲット言語の専門知識が利用可能であれば、IGTデータをうまく活用できると仮定する。
本研究は,Tsimchianic Language Gitksanのための形態的再帰システムの構築に関する事例研究を通じて,各ステップについて解説する。
論文 参考訳(メタデータ) (2022-03-17T22:02:25Z) - Graph Neural Network Enhanced Language Models for Efficient Multilingual
Text Classification [8.147244878591014]
本稿では,モノ,クロス,マルチ言語シナリオ下で動作可能な多言語災害関連テキスト分類システムを提案する。
我々のエンドツーエンドのトレーニング可能なフレームワークは、コーパスに代えてグラフニューラルネットワークの汎用性を組み合わせたものです。
我々は、モノ、クロス、マルチ言語分類シナリオにおいて、合計9つの英語、非英語、モノリンガルデータセットについて、我々のフレームワークを評価した。
論文 参考訳(メタデータ) (2022-03-06T09:05:42Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
言語間アウトラインに基づく対話データセット(COD)は、自然言語の理解を可能にする。
CODは、4つの異なる言語で対話状態の追跡とエンドツーエンドの対話モデリングと評価を可能にする。
論文 参考訳(メタデータ) (2022-01-31T18:11:21Z) - GlobalWoZ: Globalizing MultiWoZ to Develop Multilingual Task-Oriented
Dialogue Systems [66.92182084456809]
本稿では,英語のToDデータセットから大規模多言語ToDデータセットであるGlobalWoZを生成する新しいデータキュレーション手法を提案する。
本手法は,対話テンプレートの翻訳と,対象国におけるローカルエンティティの充填に基づく。
我々はデータセットと強力なベースラインのセットを公開し、実際のユースケースにおける多言語ToDシステムの学習を奨励します。
論文 参考訳(メタデータ) (2021-10-14T19:33:04Z) - Detecting ESG topics using domain-specific language models and data
augmentation approaches [3.3332986505989446]
金融分野における自然言語処理タスクは、適切にラベル付けされたデータのあいまいさのため、依然として困難なままである。
本稿では,これらの問題を緩和するための2つのアプローチについて検討する。
まず、ビジネスおよび財務ニュースから大量のドメイン内データを用いて、さらなる言語モデルの事前学習実験を行う。
次に、モデル微調整のためのデータセットのサイズを増やすために拡張アプローチを適用します。
論文 参考訳(メタデータ) (2020-10-16T11:20:07Z) - Low resource language dataset creation, curation and classification:
Setswana and Sepedi -- Extended Abstract [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
分類のためのベースラインを提案し,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-03-30T18:03:15Z) - Investigating an approach for low resource language dataset creation,
curation and classification: Setswana and Sepedi [2.3801001093799115]
SetswanaとSepediのニュースの見出しに焦点を当てたデータセットを作成します。
ニューストピックの分類タスクも作成します。
本稿では,低リソース言語に適したデータ拡張手法について検討する。
論文 参考訳(メタデータ) (2020-02-18T13:58:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。