論文の概要: XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages
- arxiv url: http://arxiv.org/abs/2305.11938v2
- Date: Wed, 24 May 2023 06:09:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-26 00:47:09.468053
- Title: XTREME-UP: A User-Centric Scarce-Data Benchmark for Under-Represented
Languages
- Title(参考訳): XTREME-UP: 表現下言語のためのユーザ中心のスカースデータベンチマーク
- Authors: Sebastian Ruder, Jonathan H. Clark, Alexander Gutkin, Mihir Kale, Min
Ma, Massimo Nicosia, Shruti Rijhwani, Parker Riley, Jean-Michel A. Sarr,
Xinyi Wang, John Wieting, Nitish Gupta, Anna Katanova, Christo Kirov, Dana L.
Dickinson, Brian Roark, Bidisha Samanta, Connie Tao, David I. Adelani, Vera
Axelrod, Isaac Caswell, Colin Cherry, Dan Garrette, Reeve Ingle, Melvin
Johnson, Dmitry Panteleev, Partha Talukdar
- Abstract要約: データ不足は、多言語NLPシステムの開発において重要な問題である。
我々はXTREME-UPを提案する。XTREME-UPはゼロショットではなく、希少なデータシナリオに焦点を当てたベンチマークである。
XTREME-UPは、88言語にまたがる言語モデルが、9つのキーとなるユーザー中心技術上で機能する能力を評価する。
- 参考スコア(独自算出の注目度): 105.54207724678767
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data scarcity is a crucial issue for the development of highly multilingual
NLP systems. Yet for many under-represented languages (ULs) -- languages for
which NLP re-search is particularly far behind in meeting user needs -- it is
feasible to annotate small amounts of data. Motivated by this, we propose
XTREME-UP, a benchmark defined by: its focus on the scarce-data scenario rather
than zero-shot; its focus on user-centric tasks -- tasks with broad adoption by
speakers of high-resource languages; and its focus on under-represented
languages where this scarce-data scenario tends to be most realistic. XTREME-UP
evaluates the capabilities of language models across 88 under-represented
languages over 9 key user-centric technologies including ASR, OCR, MT, and
information access tasks that are of general utility. We create new datasets
for OCR, autocomplete, semantic parsing, and transliteration, and build on and
refine existing datasets for other tasks. XTREME-UP provides methodology for
evaluating many modeling scenarios including text-only, multi-modal (vision,
audio, and text),supervised parameter tuning, and in-context learning. We
evaluate commonly used models on the benchmark. We release all code and scripts
to train and evaluate models
- Abstract(参考訳): データ不足は、多言語NLPシステムの開発において重要な問題である。
しかし、多くの未表現言語(UL) -- NLPの再検索がユーザニーズを満たす上で特に遅れている言語 -- では、少量のデータに注釈をつけることは可能である。
XTREME-UPは、ゼロショットではなく、希少なデータシナリオに焦点をあてること、ユーザ中心のタスクに焦点を当てること、高ソース言語の話者が広く採用するタスク、この希少なデータシナリオが最も現実的になるような表現不足言語に焦点を当てることである。
XTREME-UPは、ASR、OCR、MT、および汎用性のある情報アクセスタスクを含む9つの主要なユーザ中心技術に対して、88の非表現言語にわたる言語モデルの性能を評価する。
ocr、オートコンプリート、セマンティクス解析、および翻訳のための新しいデータセットを作成し、他のタスクのために既存のデータセットを構築し、洗練します。
XTREME-UPは、テキストのみ、マルチモーダル(ビジョン、オーディオ、テキスト)、教師付きパラメータチューニング、コンテキスト内学習など、多くのモデリングシナリオを評価する方法論を提供する。
ベンチマークでよく使われるモデルを評価する。
モデルをトレーニングし、評価するすべてのコードとスクリプトをリリースします。
関連論文リスト
- ColBERT-XM: A Modular Multi-Vector Representation Model for Zero-Shot
Multilingual Information Retrieval [10.664434993386523]
現在のアプローチは、非英語言語における高品質なラベル付きデータの欠如を回避している。
本稿では,単一の高リソース言語のリッチデータから学習するモジュール型高密度検索モデルを提案する。
論文 参考訳(メタデータ) (2024-02-23T02:21:24Z) - Cross-Lingual Dialogue Dataset Creation via Outline-Based Generation [70.81596088969378]
言語間アウトラインに基づく対話データセット(COD)は、自然言語の理解を可能にする。
CODは、4つの異なる言語で対話状態の追跡とエンドツーエンドの対話モデリングと評価を可能にする。
論文 参考訳(メタデータ) (2022-01-31T18:11:21Z) - Improving Low-resource Reading Comprehension via Cross-lingual
Transposition Rethinking [0.9236074230806579]
Extractive Reading (ERC)は、大規模で高品質なERCトレーニングデータの提供によって、大幅に進歩した。
このような急速な進歩と広範囲の応用にもかかわらず、英語のような高リソース言語以外の言語のデータセットは依然として不足している。
多言語環境において,既存の高品質抽出読解データセットをモデル化し,XLTT(Cross-Lingual Transposition ReThinking)モデルを提案する。
論文 参考訳(メタデータ) (2021-07-11T09:35:16Z) - X-FACT: A New Benchmark Dataset for Multilingual Fact Checking [21.2633064526968]
本稿では,X-FACTについて紹介する。X-FACTは,自然に存在する実世界のクレームの事実検証のための,多言語データセットとして最大である。
データセットには25の言語で短いステートメントが含まれており、専門家のファクトチェッカーによって正確性を示すラベルが付けられている。
論文 参考訳(メタデータ) (2021-06-17T05:09:54Z) - Reinforced Iterative Knowledge Distillation for Cross-Lingual Named
Entity Recognition [54.92161571089808]
言語間NERは、知識をリッチリソース言語から低リソース言語に転送する。
既存の言語間NERメソッドは、ターゲット言語でリッチなラベル付けされていないデータをうまく利用しない。
半教師付き学習と強化学習のアイデアに基づく新しいアプローチを開発する。
論文 参考訳(メタデータ) (2021-06-01T05:46:22Z) - UNKs Everywhere: Adapting Multilingual Language Models to New Scripts [103.79021395138423]
マルチリンガルBERT(mBERT)やXLM-Rのような多言語言語モデルは、様々なNLPタスクに対して最先端の言語間転送性能を提供する。
キャパシティの制限と事前トレーニングデータの大きな差のため、リソース豊富な言語とリソースを対象とする言語には大きなパフォーマンスギャップがある。
本稿では,事前学習した多言語モデルの低リソース言語や未知のスクリプトへの高速かつ効果的な適応を可能にする新しいデータ効率手法を提案する。
論文 参考訳(メタデータ) (2020-12-31T11:37:28Z) - XL-WiC: A Multilingual Benchmark for Evaluating Semantic
Contextualization [98.61159823343036]
単語の意味を正確にモデル化する能力を評価するために,Word-in-Context データセット (WiC) を提案する。
我々は、XL-WiCという大規模なマルチ言語ベンチマークを提案し、12の新しい言語でゴールドスタンダードを特徴付けました。
実験結果から、ターゲット言語にタグ付けされたインスタンスが存在しない場合でも、英語データのみにトレーニングされたモデルは、競争力のあるパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2020-10-13T15:32:00Z) - MTOP: A Comprehensive Multilingual Task-Oriented Semantic Parsing
Benchmark [31.91964553419665]
我々はMTOPと呼ばれる新しい多言語データセットを提案し、11ドメインの6言語で100kの注釈付き発話を合成する。
既存の2つの多言語データセットに対して、Slot F1上の+6.3ポイントの平均的な改善を、実験で報告された最良の結果よりも達成する。
本稿では,事前学習モデルと自動翻訳とアライメントを組み合わせたゼロショット性能と,スロットラベル投影におけるノイズ低減のための遠隔監視手法を提案する。
論文 参考訳(メタデータ) (2020-08-21T07:02:11Z) - XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating
Cross-lingual Generalization [128.37244072182506]
言語間TRansfer Evaluation of Multilinguals XTREMEは、40言語および9タスクにわたる多言語表現の言語間一般化能力を評価するためのベンチマークである。
我々は、英語でテストされたモデルは、多くのタスクにおいて人間のパフォーマンスに達するが、言語間変換されたモデルの性能にはまだ大きなギャップがあることを示した。
論文 参考訳(メタデータ) (2020-03-24T19:09:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。