ECRTime: Ensemble Integration of Classification and Retrieval for Time Series Classification
- URL: http://arxiv.org/abs/2407.14735v1
- Date: Sat, 20 Jul 2024 03:17:23 GMT
- Title: ECRTime: Ensemble Integration of Classification and Retrieval for Time Series Classification
- Authors: Fan Zhao, You Chen,
- Abstract summary: Experimental results on 112 UCR datasets demonstrate that ECR is state-of-the-art(sota) compared to existing deep learning-based methods.
ECRTime surpasses the currently most accurate deep learning classifier, InceptionTime, in terms of accuracy.
- Score: 6.058649579669944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based methods for Time Series Classification (TSC) typically utilize deep networks to extract features, which are then processed through a combination of a Fully Connected (FC) layer and a SoftMax function. However, we have observed the phenomenon of inter-class similarity and intra-class inconsistency in the datasets from the UCR archive and further analyzed how this phenomenon adversely affects the "FC+SoftMax" paradigm. To address the issue, we introduce ECR, which, for the first time to our knowledge, applies deep learning-based retrieval algorithm to the TSC problem and integrates classification and retrieval models. Experimental results on 112 UCR datasets demonstrate that ECR is state-of-the-art(sota) compared to existing deep learning-based methods. Furthermore, we have developed a more precise classifier, ECRTime, which is an ensemble of ECR. ECRTime surpasses the currently most accurate deep learning classifier, InceptionTime, in terms of accuracy, achieving this with reduced training time and comparable scalability.
Related papers
- TS-ACL: A Time Series Analytic Continual Learning Framework for Privacy-Preserving and Class-Incremental Pattern Recognition [14.6394894445113]
We propose a Time Series Analytic Continual Learning framework, called TS-ACL.
Inspired by analytical learning, TS-ACL transforms neural network updates into gradient-free linear regression problems.
Our framework is highly suitable for real-time applications and large-scale data processing.
arXiv Detail & Related papers (2024-10-21T12:34:02Z) - Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - Finding Foundation Models for Time Series Classification with a PreText
Task [7.197233473373693]
This paper introduces pre-trained domain foundation models for Time Series Classification.
A key aspect of our methodology is a novel pretext task that spans multiple datasets.
Our experiments on the UCR archive demonstrate that this pre-training strategy significantly outperforms the conventional training approach without pre-training.
arXiv Detail & Related papers (2023-11-24T15:03:55Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
FormerTime is a hierarchical representation model for improving the classification capacity for the multivariate time series classification task.
It exhibits three aspects of merits: (1) learning hierarchical multi-scale representations from time series data, (2) inheriting the strength of both transformers and convolutional networks, and (3) tacking the efficiency challenges incurred by the self-attention mechanism.
arXiv Detail & Related papers (2023-02-20T07:46:14Z) - The FreshPRINCE: A Simple Transformation Based Pipeline Time Series
Classifier [0.0]
We look at whether the complexity of the algorithms considered state of the art is really necessary.
Many times the first approach suggested is a simple pipeline of summary statistics or other time series feature extraction approaches.
We test these approaches on the UCR time series dataset archive, looking to see if TSC literature has overlooked the effectiveness of these approaches.
arXiv Detail & Related papers (2022-01-28T11:23:58Z) - The CLEAR Benchmark: Continual LEArning on Real-World Imagery [77.98377088698984]
Continual learning (CL) is widely regarded as crucial challenge for lifelong AI.
We introduce CLEAR, the first continual image classification benchmark dataset with a natural temporal evolution of visual concepts.
We find that a simple unsupervised pre-training step can already boost state-of-the-art CL algorithms.
arXiv Detail & Related papers (2022-01-17T09:09:09Z) - Towards Similarity-Aware Time-Series Classification [51.2400839966489]
We study time-series classification (TSC), a fundamental task of time-series data mining.
We propose Similarity-Aware Time-Series Classification (SimTSC), a framework that models similarity information with graph neural networks (GNNs)
arXiv Detail & Related papers (2022-01-05T02:14:57Z) - Layer Pruning on Demand with Intermediate CTC [50.509073206630994]
We present a training and pruning method for ASR based on the connectionist temporal classification (CTC)
We show that a Transformer-CTC model can be pruned in various depth on demand, improving real-time factor from 0.005 to 0.002 on GPU.
arXiv Detail & Related papers (2021-06-17T02:40:18Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
A central challenge in training classification models in the real-world federated system is learning with non-IID data.
We propose a novel and simple algorithm called Virtual Representations (CCVR), which adjusts the classifier using virtual representations sampled from an approximated ssian mixture model.
Experimental results demonstrate that CCVR state-of-the-art performance on popular federated learning benchmarks including CIFAR-10, CIFAR-100, and CINIC-10.
arXiv Detail & Related papers (2021-06-09T12:02:29Z) - Classification of multivariate weakly-labelled time-series with
attention [0.0]
Weakly labelled time-series are time-series containing noise and significant redundancies.
This paper proposes an approach of exploiting context relevance of subsequences to improve classification accuracy.
arXiv Detail & Related papers (2021-02-16T16:05:38Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.