Nonreciprocal Quantum Sensing
- URL: http://arxiv.org/abs/2407.14739v1
- Date: Sat, 20 Jul 2024 03:31:50 GMT
- Title: Nonreciprocal Quantum Sensing
- Authors: Dong Xie, Chunling Xu,
- Abstract summary: We investigate the advantages of nonreciprocal coupling in sensing a driving signal.
A single non-reciprocal coupling can increase measurement precision up to 2 times.
In a non-zero temperature dissipative environment, we demonstrate that the nonreciprocal quantum sensing has better robustness to thermal noise than the reciprocal quantum sensing.
- Score: 1.495789633878348
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonreciprocity can not only generate quantum resources, but also shield noise and reverse interference from driving signals. We investigate the advantages of nonreciprocal coupling in sensing a driving signal. In general, we find that the nonreciprocal coupling performs better than the corresponding reciprocal coupling. And we show that homodyne measurement is the optimal measurement. A single non-reciprocal coupling can increase measurement precision up to 2 times. Using $N$ non-reciprocal couplings in parallel, the measurement precision can be improved by $N^2$ times compared with the corresponding reciprocal coupling. In a non-zero temperature dissipative environment, we demonstrate that the nonreciprocal quantum sensing has better robustness to thermal noise than the reciprocal quantum sensing.
Related papers
- Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Advantages of non-Hookean coupling in a measurement-fueled
two-oscillator engine [65.268245109828]
A quantum engine composed of two oscillators with a non-Hookean coupling is proposed.
Unlike the more common quantum heat engines, the setup introduced here does not require heat baths as the energy for the operation originates from measurements.
Numerical simulations are used to demonstrate the measurement-driven fueling, as well as the reduced decoupling energy.
arXiv Detail & Related papers (2023-11-08T04:09:26Z) - Supersensitive sensing of quantum reservoirs via breaking antisymmetric
coupling [2.3291814161028497]
In addition to the decay factor encoding channel, the antisymmetric coupling breaking gives rise to another phase factor encoding channel.
We introduce an optimal measurement for the generalized dephasing qubit.
Our work opens a way for supersensitive sensing of quantum reservoirs.
arXiv Detail & Related papers (2023-10-19T03:52:37Z) - Creating mirror-mirror quantum correlations in optomechanics [0.0]
We study the transfer of quantum correlations between two movable mirrors of two Fabry-P'erot cavities separated via broadband squeezed light and coupled via photon hopping process.
arXiv Detail & Related papers (2023-08-11T02:38:26Z) - Enhancing Dispersive Readout of Superconducting Qubits Through Dynamic
Control of the Dispersive Shift: Experiment and Theory [47.00474212574662]
A superconducting qubit is coupled to a large-bandwidth readout resonator.
We show a beyond-state-of-the-art two-state-readout error of only 0.25,%$ in 100 ns integration time.
The presented results are expected to further boost the performance of new and existing algorithms and protocols.
arXiv Detail & Related papers (2023-07-15T10:30:10Z) - Quantum probes for the characterization of nonlinear media [50.591267188664666]
We investigate how squeezed probes may improve individual and joint estimation of the nonlinear coupling $tildelambda$ and of the nonlinearity order $zeta$.
We conclude that quantum probes represent a resource to enhance precision in the characterization of nonlinear media, and foresee potential applications with current technology.
arXiv Detail & Related papers (2021-09-16T15:40:36Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Fundamental limits for reciprocal and non-reciprocal non-Hermitian
quantum sensing [2.372393003522374]
Non-reciprocity can be a powerful resource for non-Hermitian quantum sensing.
We establish fundamental limits on signal-to-noise ratio for reciprocal and non-reciprocal quantum sensing.
arXiv Detail & Related papers (2021-04-22T01:45:11Z) - Quantum Metrology with Coherent Superposition of Two Different Coded
Channels [1.430924337853801]
We show that the Heisenberg limit $1/N$ can be beaten by the coherent superposition without the help of indefinite causal order.
We analytically obtain the general form of estimation precision in terms of the quantum Fisher information.
Our results can help to construct a high-precision measurement equipment.
arXiv Detail & Related papers (2020-12-03T13:25:16Z) - Discrimination of Ohmic thermal baths by quantum dephasing probes [68.8204255655161]
We evaluate the minimum error probability achievable by three different kinds of quantum probes, namely a qubit, a qutrit and a quantum register made of two qubits.
A qutrit probe outperforms a qubit one in the discrimination task, whereas a register made of two qubits does not offer any advantage.
arXiv Detail & Related papers (2020-08-06T08:51:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.