I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
- URL: http://arxiv.org/abs/2407.14767v2
- Date: Mon, 30 Sep 2024 01:45:34 GMT
- Title: I Need Help! Evaluating LLM's Ability to Ask for Users' Support: A Case Study on Text-to-SQL Generation
- Authors: Cheng-Kuang Wu, Zhi Rui Tam, Chao-Chung Wu, Chieh-Yen Lin, Hung-yi Lee, Yun-Nung Chen,
- Abstract summary: This study explores the proactive ability of LLMs to seek user support.
We propose metrics to evaluate the trade-off between performance improvements and user burden.
Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support.
- Score: 60.00337758147594
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This study explores the proactive ability of LLMs to seek user support. We propose metrics to evaluate the trade-off between performance improvements and user burden, and investigate whether LLMs can determine when to request help under varying information availability. Our experiments show that without external feedback, many LLMs struggle to recognize their need for user support. The findings highlight the importance of external signals and provide insights for future research on improving support-seeking strategies. Source code: https://github.com/appier-research/i-need-help
Related papers
- Grounding by Trying: LLMs with Reinforcement Learning-Enhanced Retrieval [55.63711219190506]
Large language models (LLMs) often struggle with posing the right search queries.
We introduce $underlineLe$arning to $underlineRe$trieve by $underlineT$rying (LeReT)
LeReT can improve the absolute retrieval accuracy by up to 29% and the downstream generator evaluations by 17%.
arXiv Detail & Related papers (2024-10-30T17:02:54Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
Large language models (LLMs) have shown remarkable versatility in various generative tasks.
This study focuses on the topic of LLMs assist NLP Researchers.
To our knowledge, this is the first work to provide such a comprehensive analysis.
arXiv Detail & Related papers (2024-06-24T01:30:22Z) - AGILE: A Novel Reinforcement Learning Framework of LLM Agents [7.982249117182315]
We introduce a novel reinforcement learning framework of LLM agents designed to perform complex conversational tasks with users.
The agent possesses capabilities beyond conversation, including reflection, tool usage, and expert consultation.
Our experiments show that AGILE agents based on 7B and 13B LLMs trained with PPO can outperform GPT-4 agents.
arXiv Detail & Related papers (2024-05-23T16:17:44Z) - When to Retrieve: Teaching LLMs to Utilize Information Retrieval Effectively [3.705145020383824]
We show how Large Language Models (LLMs) can learn to use an off-the-shelf information retrieval (IR) system specifically when additional context is required to answer a given question.
arXiv Detail & Related papers (2024-04-30T16:52:55Z) - LLM In-Context Recall is Prompt Dependent [0.0]
A model's ability to do this significantly influences its practical efficacy and dependability in real-world applications.
This study demonstrates that an LLM's recall capability is not only contingent upon the prompt's content but also may be compromised by biases in its training data.
arXiv Detail & Related papers (2024-04-13T01:13:59Z) - Small Models, Big Insights: Leveraging Slim Proxy Models To Decide When and What to Retrieve for LLMs [60.40396361115776]
This paper introduces a novel collaborative approach, namely SlimPLM, that detects missing knowledge in large language models (LLMs) with a slim proxy model.
We employ a proxy model which has far fewer parameters, and take its answers as answers.
Heuristic answers are then utilized to predict the knowledge required to answer the user question, as well as the known and unknown knowledge within the LLM.
arXiv Detail & Related papers (2024-02-19T11:11:08Z) - Why and When LLM-Based Assistants Can Go Wrong: Investigating the
Effectiveness of Prompt-Based Interactions for Software Help-Seeking [5.755004576310333]
Large Language Model (LLM) assistants have emerged as potential alternatives to search methods for helping users navigate software.
LLM assistants use vast training data from domain-specific texts, software manuals, and code repositories to mimic human-like interactions.
arXiv Detail & Related papers (2024-02-12T19:49:58Z) - ToolQA: A Dataset for LLM Question Answering with External Tools [14.408707186450899]
Large Language Models (LLMs) have demonstrated impressive performance in various NLP tasks.
They still suffer from challenges such as hallucination and weak numerical reasoning.
To overcome these challenges, external tools can be used to enhance LLMs' question-answering abilities.
arXiv Detail & Related papers (2023-06-23T05:43:28Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z) - Attributed Question Answering: Evaluation and Modeling for Attributed
Large Language Models [68.37431984231338]
Large language models (LLMs) have shown impressive results across a variety of tasks while requiring little or no direct supervision.
We believe the ability of an LLM to an attribute to the text that it generates is likely to be crucial for both system developers and users in this setting.
arXiv Detail & Related papers (2022-12-15T18:45:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.