論文の概要: Subgraph Clustering and Atom Learning for Improved Image Classification
- arxiv url: http://arxiv.org/abs/2407.14772v2
- Date: Mon, 30 Sep 2024 15:08:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 21:59:35.254219
- Title: Subgraph Clustering and Atom Learning for Improved Image Classification
- Title(参考訳): 改良された画像分類のためのサブグラフクラスタリングと原子学習
- Authors: Aryan Singh, Pepijn Van de Ven, Ciarán Eising, Patrick Denny,
- Abstract要約: 本稿では,特徴抽出のための畳み込みニューラルネットワーク(CNN)と構造モデリングのためのグラフニューラルネットワーク(GNN)の長所を融合した,新しいハイブリッド画像分類モデルであるグラフサブグラフネットワーク(GSN)を提案する。
GSNはk平均クラスタリングを使用してグラフノードをクラスタにグループ化し、サブグラフの作成を容易にする。
これらの部分グラフを使用して、辞書学習のための代表原子を学習し、スパースでクラス区別可能な特徴の識別を可能にする。
- 参考スコア(独自算出の注目度): 4.499833362998488
- License:
- Abstract: In this study, we present the Graph Sub-Graph Network (GSN), a novel hybrid image classification model merging the strengths of Convolutional Neural Networks (CNNs) for feature extraction and Graph Neural Networks (GNNs) for structural modeling. GSN employs k-means clustering to group graph nodes into clusters, facilitating the creation of subgraphs. These subgraphs are then utilized to learn representative `atoms` for dictionary learning, enabling the identification of sparse, class-distinguishable features. This integrated approach is particularly relevant in domains like medical imaging, where discerning subtle feature differences is crucial for accurate classification. To evaluate the performance of our proposed GSN, we conducted experiments on benchmark datasets, including PascalVOC and HAM10000. Our results demonstrate the efficacy of our model in optimizing dictionary configurations across varied classes, which contributes to its effectiveness in medical classification tasks. This performance enhancement is primarily attributed to the integration of CNNs, GNNs, and graph learning techniques, which collectively improve the handling of datasets with limited labeled examples. Specifically, our experiments show that the model achieves a higher accuracy on benchmark datasets such as Pascal VOC and HAM10000 compared to conventional CNN approaches.
- Abstract(参考訳): 本研究では,特徴抽出のための畳み込みニューラルネットワーク(CNN)と構造モデリングのためのグラフニューラルネットワーク(GNN)の強みを組み合わせた,新しいハイブリッド画像分類モデルであるグラフサブグラフネットワーク(GSN)を提案する。
GSNはk平均クラスタリングを使用してグラフノードをクラスタにグループ化し、サブグラフの作成を容易にする。
これらのサブグラフは、辞書学習の代表的な『原子』を学習するために利用され、スパースでクラス区別可能な特徴の識別を可能にする。
この統合されたアプローチは、医用画像のような領域で特に重要であり、微妙な特徴の違いを識別することが正確な分類に不可欠である。
提案したGSNの性能を評価するため,PascalVOCやHAM10000といったベンチマークデータセットの実験を行った。
本研究は, 各種クラスにまたがる辞書構成を最適化する上で, 本モデルの有効性を示すものである。
この性能向上は、主にCNN、GNN、グラフ学習技術の統合によるものであり、ラベル付き例が限定されたデータセットの処理を総合的に改善している。
具体的には,従来のCNN手法と比較して,Pascal VOCやHAM10000といったベンチマークデータセットの方が精度が高いことを示す。
関連論文リスト
- You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
我々は、同じクラスからのテキストエンコーディングがしばしば線形部分空間に集約されるという観察に乗じて、線形GNNモデルであるTrainlessGNNを紹介した。
実験の結果、私たちのトレインレスモデルは、従来の訓練済みのモデルにマッチするか、超えられることがわかった。
論文 参考訳(メタデータ) (2024-04-17T02:52:11Z) - DGNN: Decoupled Graph Neural Networks with Structural Consistency
between Attribute and Graph Embedding Representations [62.04558318166396]
グラフニューラルネットワーク(GNN)は、複雑な構造を持つグラフ上での表現学習の堅牢性を示す。
ノードのより包括的な埋め込み表現を得るために、Decoupled Graph Neural Networks (DGNN)と呼ばれる新しいGNNフレームワークが導入された。
複数のグラフベンチマークデータセットを用いて、ノード分類タスクにおけるDGNNの優位性を検証した。
論文 参考訳(メタデータ) (2024-01-28T06:43:13Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
本稿では,GNNの逆写像に対する新しい,スケーラブルな近似による学習バイアスを軽減するために,ラベルの効率的な正規化手法,すなわちラベルのデコンボリューション(LD)を提案する。
実験では、LDはOpen Graphデータセットのベンチマークで最先端のメソッドを大幅に上回っている。
論文 参考訳(メタデータ) (2023-09-26T13:09:43Z) - Compact & Capable: Harnessing Graph Neural Networks and Edge Convolution
for Medical Image Classification [0.0]
本稿では,重要なグラフノード間の接続を強く表現するために,RGBチャネルの特徴値の相互接続性を活用し,GNNとエッジ畳み込みを組み合わせた新しいモデルを提案する。
提案モデルでは,最新のDeep Neural Networks (DNN) と同等に動作するが,1000倍のパラメータが減少し,トレーニング時間とデータ要求が短縮される。
論文 参考訳(メタデータ) (2023-07-24T13:39:21Z) - Deep Graph Neural Networks via Flexible Subgraph Aggregation [50.034313206471694]
グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習し、近隣情報を集約することでノードの表現を学ぶ。
本稿では,サブグラフアグリゲーションの観点から,GNNの表現力を評価する。
サブグラフアグリゲーションの異なるホップをより柔軟に活用できるサンプリングベースノードレベル残余モジュール(SNR)を提案する。
論文 参考訳(メタデータ) (2023-05-09T12:03:42Z) - Simplifying approach to Node Classification in Graph Neural Networks [7.057970273958933]
グラフニューラルネットワークのノード特徴集約ステップと深さを分離し、異なる集約特徴が予測性能にどのように寄与するかを経験的に分析する。
集約ステップによって生成された全ての機能が有用であるとは限らないことを示し、これらの少ない情報的特徴を用いることは、GNNモデルの性能に有害であることを示す。
提案モデルでは,提案モデルが最先端のGNNモデルと同等あるいはそれ以上の精度を達成可能であることを実証的に示す。
論文 参考訳(メタデータ) (2021-11-12T14:53:22Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
本稿では,画像の集合を未知の個数にクラスタリングする方法を学ぶ階層型グラフニューラルネットワーク(GNN)モデルを提案する。
我々の階層的なGNNは、階層の各レベルで予測される連結コンポーネントをマージして、次のレベルで新しいグラフを形成するために、新しいアプローチを用いています。
論文 参考訳(メタデータ) (2021-07-03T01:28:42Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
グラフニューラルネットワーク(GNN)は、グラフ構造化データを学習するためのパラメトリックモデルの一般的なクラスである。
最近の研究は、GNNが主に機能をスムースにするためにグラフを使用しており、ベンチマークタスクで競合する結果を示していると主張している。
本研究では、これらの結果が異種グラフに拡張可能かどうかを問うとともに、異なるエンティティ間の複数のタイプの関係を符号化する。
論文 参考訳(メタデータ) (2020-11-19T06:03:35Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning [19.432449825536423]
教師なしグラフ表現学習は、教師なしの低次元ノード埋め込みを学習することを目的としている。
本稿では、自己教師付き手法を用いた教師なしグラフ表現学習のための新しいクラスタ対応グラフニューラルネットワーク(CAGNN)モデルを提案する。
論文 参考訳(メタデータ) (2020-09-03T13:57:18Z) - Embedding Graph Auto-Encoder for Graph Clustering [90.8576971748142]
グラフ自動エンコーダ(GAE)モデルは、半教師付きグラフ畳み込みネットワーク(GCN)に基づく
我々は、グラフクラスタリングのための特定のGAEベースのモデルを設計し、その理論、すなわち、埋め込みグラフオートエンコーダ(EGAE)と整合する。
EGAEは1つのエンコーダと2つのデコーダで構成される。
論文 参考訳(メタデータ) (2020-02-20T09:53:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。