MedMAE: A Self-Supervised Backbone for Medical Imaging Tasks
- URL: http://arxiv.org/abs/2407.14784v1
- Date: Sat, 20 Jul 2024 07:29:04 GMT
- Title: MedMAE: A Self-Supervised Backbone for Medical Imaging Tasks
- Authors: Anubhav Gupta, Islam Osman, Mohamed S. Shehata, John W. Braun,
- Abstract summary: We propose a large-scale unlabeled dataset of medical images and a backbone pre-trained with a self-supervised learning technique called Masked autoencoder.
This backbone can be used as a pre-trained model for any medical imaging task, as it is trained to learn a visual representation of different types of medical images.
- Score: 3.1296917941367686
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Medical imaging tasks are very challenging due to the lack of publicly available labeled datasets. Hence, it is difficult to achieve high performance with existing deep-learning models as they require a massive labeled dataset to be trained effectively. An alternative solution is to use pre-trained models and fine-tune them using the medical imaging dataset. However, all existing models are pre-trained using natural images, which is a completely different domain from that of medical imaging, which leads to poor performance due to domain shift. To overcome these problems, we propose a large-scale unlabeled dataset of medical images and a backbone pre-trained using the proposed dataset with a self-supervised learning technique called Masked autoencoder. This backbone can be used as a pre-trained model for any medical imaging task, as it is trained to learn a visual representation of different types of medical images. To evaluate the performance of the proposed backbone, we used four different medical imaging tasks. The results are compared with existing pre-trained models. These experiments show the superiority of our proposed backbone in medical imaging tasks.
Related papers
- Disease Classification and Impact of Pretrained Deep Convolution Neural Networks on Diverse Medical Imaging Datasets across Imaging Modalities [0.0]
This paper investigates the intricacies of using pretrained deep convolutional neural networks with transfer learning across diverse medical imaging datasets.
It shows that the use of pretrained models as fixed feature extractors yields poor performance irrespective of the datasets.
It is also found that deeper and more complex architectures did not necessarily result in the best performance.
arXiv Detail & Related papers (2024-08-30T04:51:19Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
We show how to automatically collect medical image-text aligned data for pretraining from public resources such as PubMed.
In particular, we present a pipeline that streamlines the pre-training process by initially collecting a large brain image-text dataset.
We also investigate the unique challenge of mapping subfigures to subcaptions in the medical domain.
arXiv Detail & Related papers (2024-04-27T05:03:42Z) - Overcoming Data Scarcity in Biomedical Imaging with a Foundational
Multi-Task Model [2.5994154212235685]
Foundational models, pretrained on a large scale, have demonstrated substantial success across non-medical domains.
Here, we propose a multi-task learning strategy that decouples the number of training tasks from memory requirements.
arXiv Detail & Related papers (2023-11-16T12:20:25Z) - Self-Supervised Pre-Training with Contrastive and Masked Autoencoder
Methods for Dealing with Small Datasets in Deep Learning for Medical Imaging [8.34398674359296]
Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis.
Training such deep learning models requires large and accurate datasets, with annotations for all training samples.
To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning.
arXiv Detail & Related papers (2023-08-12T11:31:01Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
This work focuses on designing an effective pre-training framework for 3D radiology images.
We introduce Disruptive Autoencoders, a pre-training framework that attempts to reconstruct the original image from disruptions created by a combination of local masking and low-level perturbations.
The proposed pre-training framework is tested across multiple downstream tasks and achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-07-31T17:59:42Z) - LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical
Imaging via Second-order Graph Matching [59.01894976615714]
We introduce LVM-Med, the first family of deep networks trained on large-scale medical datasets.
We have collected approximately 1.3 million medical images from 55 publicly available datasets.
LVM-Med empirically outperforms a number of state-of-the-art supervised, self-supervised, and foundation models.
arXiv Detail & Related papers (2023-06-20T22:21:34Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
In this paper, we collect a series of MedISeg tricks for different model implementation phases.
We experimentally explore the effectiveness of these tricks on consistent baselines.
We also open-sourced a strong MedISeg repository, where each component has the advantage of plug-and-play.
arXiv Detail & Related papers (2022-09-21T12:30:05Z) - A Systematic Benchmarking Analysis of Transfer Learning for Medical
Image Analysis [7.339428207644444]
We conduct a systematic study on the transferability of models pre-trained on iNat2021, the most recent large-scale fine-grained dataset.
We present a practical approach to bridge the domain gap between natural and medical images by continually (pre-training) supervised ImageNet models on medical images.
arXiv Detail & Related papers (2021-08-12T19:08:34Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Discriminative Cross-Modal Data Augmentation for Medical Imaging
Applications [24.06277026586584]
Deep learning methods have shown great success in medical image analysis, they require a number of medical images to train.
Due to data privacy concerns and unavailability of medical annotators, it is oftentimes very difficult to obtain a lot of labeled medical images for model training.
We propose a discriminative unpaired image-to-image translation model which translates images in source modality into images in target modality.
arXiv Detail & Related papers (2020-10-07T15:07:00Z) - Universal Model for Multi-Domain Medical Image Retrieval [88.67940265012638]
Medical Image Retrieval (MIR) helps doctors quickly find similar patients' data.
MIR is becoming increasingly helpful due to the wide use of digital imaging modalities.
However, the popularity of various digital imaging modalities in hospitals also poses several challenges to MIR.
arXiv Detail & Related papers (2020-07-14T23:22:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.