論文の概要: CrossDehaze: Scaling Up Image Dehazing with Cross-Data Vision Alignment and Augmentation
- arxiv url: http://arxiv.org/abs/2407.14823v1
- Date: Sat, 20 Jul 2024 10:00:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 20:42:12.736092
- Title: CrossDehaze: Scaling Up Image Dehazing with Cross-Data Vision Alignment and Augmentation
- Title(参考訳): CrossDehaze: クロスデータビジョンアライメントと拡張によるイメージデハジングのスケールアップ
- Authors: Yukai Shi, Zhipeng Weng, Yupei Lin, Cidan Shi, Xiaojun Yang, Liang Lin,
- Abstract要約: 画像デハジングの課題に対処するために,先行と深層学習に基づく手法が提案されている。
本稿では,既存のデハージング手法を改善するために,内部および外部データ拡張の新しい手法を提案する。
提案手法は, 実際のヘイズフリー画像に最も近いデハズド画像のデハズ化やデハズド画像の生成において, 他の先進的手法よりも著しく優れている。
- 参考スコア(独自算出の注目度): 47.425906124301775
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, as computer vision tasks have increasingly relied on high-quality image inputs, the task of image dehazing has received significant attention. Previously, many methods based on priors and deep learning have been proposed to address the task of image dehazing. Ignoring the domain gap between different data, former de-hazing methods usually adopt multiple datasets for explicit training, which often makes the methods themselves be violated. To address this problem, we propose a novel method of internal and external data augmentation to improve the existing dehazing methodology. By using cross-data external augmentor. The dataset inherits samples from different domains that are firmly aligned, making the model learn more robust and generalizable features. By using the internal data augmentation method, the model can fully exploit local information within the images, thereby obtaining more image details. To demonstrate the effectiveness of our proposed method, we conduct training on both the Natural Image Dataset (NID) and the Remote Sensing Image Dataset (RSID). Experimental results show that our method clearly resolves the domain gap in different dehazing datasets and presents a new pipeline for joint training in the dehazing task. Our approach significantly outperforms other advanced methods in dehazing and produces dehazed images that are closest to real haze-free images. The code will be available at: https://github.com/wengzp1/ScaleUpDehazing
- Abstract(参考訳): 近年,コンピュータビジョンタスクは高品質な画像入力にますます依存しているため,画像デハジングのタスクは注目されている。
これまで,画像デハジングの課題に対処するために,先行と深層学習に基づく多くの手法が提案されてきた。
異なるデータ間のドメインギャップを無視して、かつてのデハージングメソッドは通常、明示的なトレーニングのために複数のデータセットを採用するため、メソッド自体に違反することが多い。
そこで本研究では,既存のデハージング手法を改善するために,内部および外部データ拡張の新しい手法を提案する。
クロスデータ外部拡張子を使用すること。
データセットは、整列された異なるドメインからのサンプルを継承し、モデルがより堅牢で一般化可能な特徴を学習する。
内部データ拡張手法を用いることで、モデルが画像内のローカル情報を完全に活用し、より多くの画像の詳細を得ることができる。
提案手法の有効性を示すため,Natural Image Dataset (NID) とRemote Sensing Image Dataset (RSID) を併用したトレーニングを行った。
実験結果から,本手法は異なる脱ハージングデータセットの領域ギャップを明確に解消し,脱ハージングタスクにおける共同トレーニングのための新しいパイプラインを提案する。
提案手法は, 実際のヘイズフリー画像に最も近いデハズド画像のデハズ化やデハズド画像の生成において, 他の先進的手法よりも著しく優れている。
コードは以下の通り。 https://github.com/wengzp1/ScaleUpDehazing
関連論文リスト
- Detecting Generated Images by Real Images Only [64.12501227493765]
既存の画像検出手法は、生成画像中の視覚的アーティファクトを検出したり、大規模なトレーニングによって、実画像と生成画像の両方から識別的特徴を学習する。
本稿では,新たな視点から生成した画像検出問題にアプローチする。
実画像の共通性を見つけ、特徴空間内の密接な部分空間にマッピングすることで、生成した画像は生成モデルに関係なくサブ空間の外側に投影される。
論文 参考訳(メタデータ) (2023-11-02T03:09:37Z) - Image Data Augmentation for Deep Learning: A Survey [8.817690876855728]
我々は、異なる画像データ拡張手法を体系的にレビューする。
本稿では,レビュー手法の分類法を提案し,これらの手法の長所と短所について述べる。
また,3種類のコンピュータビジョンタスクに対して,様々なデータ拡張手法による広範囲な実験を行った。
論文 参考訳(メタデータ) (2022-04-19T02:05:56Z) - Single Image Dehazing with An Independent Detail-Recovery Network [117.86146907611054]
個別のDetail Recovery Network (DRN) を用いた単一画像デハージング手法を提案する。
DRNは、それぞれのローカルブランチとグローバルブランチを通じて、デハズドイメージの詳細を復元することを目的としている。
本手法は, 定量的, 定性的に, 最先端の脱ハージング法より優れる。
論文 参考訳(メタデータ) (2021-09-22T02:49:43Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
我々は、未ラベル画像の集合から画像特徴を学習するための新しいディープラーニングトレーニングパラダイムであるAugNetを提案する。
実験により,低次元空間における画像の表現が可能であることを実証した。
多くのディープラーニングベースの画像検索アルゴリズムとは異なり、我々のアプローチは外部アノテーション付きデータセットへのアクセスを必要としない。
論文 参考訳(メタデータ) (2021-06-11T09:02:30Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
季節的コントラスト(SeCo)は、リモートセンシング表現のドメイン内事前トレーニングにラベルのないデータを活用するための効果的なパイプラインである。
SeCoは、転送学習を容易にし、再リモートセンシングアプリケーションの急速な進歩を可能にするために公開されます。
論文 参考訳(メタデータ) (2021-03-30T18:26:39Z) - Data Augmentation for Object Detection via Differentiable Neural
Rendering [71.00447761415388]
注釈付きデータが乏しい場合、堅牢なオブジェクト検出器を訓練することは困難です。
この問題に対処する既存のアプローチには、ラベル付きデータからラベル付きデータを補間する半教師付き学習が含まれる。
オブジェクト検出のためのオフラインデータ拡張手法を導入し、新しいビューでトレーニングデータを意味的に補間する。
論文 参考訳(メタデータ) (2021-03-04T06:31:06Z) - Machine learning with limited data [1.2183405753834562]
我々は少数のショット画像分類を研究するが、我々はごく少数のラベル付きデータしか持っていない。
一つの方法は、これらの画像のスタイルを混ぜて画像の特徴を強化することです。
第2の方法は、画像のパッチ間の関係を探索するために空間的注意を適用することである。
論文 参考訳(メタデータ) (2021-01-18T17:10:39Z) - Six-channel Image Representation for Cross-domain Object Detection [17.854940064699985]
ディープラーニングモデルはデータ駆動であり、優れたパフォーマンスは豊富で多様なデータセットに依存する。
いくつかの画像から画像への翻訳技術は、モデルを訓練するために特定のシーンの偽データを生成するために用いられる。
3チャンネル画像とそのgan生成した偽画像に刺激を与え,データセットの6チャンネル表現を作成することを提案する。
論文 参考訳(メタデータ) (2021-01-03T04:50:03Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
データ隠蔽タスクでは、異なる耐久性を有するため、カバー画像の各ピクセルを別々に扱う必要がある。
Inverse Gradient Attention (IGA) を用いた新しい深層データ隠蔽方式を提案する。
実証的な実験により、提案モデルが2つの先行するデータセット上で最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2020-11-21T19:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。