Efficient Model Adaptation for Continual Learning at the Edge
- URL: http://arxiv.org/abs/2308.02084v2
- Date: Fri, 13 Oct 2023 19:02:33 GMT
- Title: Efficient Model Adaptation for Continual Learning at the Edge
- Authors: Zachary A. Daniels, Jun Hu, Michael Lomnitz, Phil Miller, Aswin
Raghavan, Joe Zhang, Michael Piacentino, David Zhang
- Abstract summary: Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
- Score: 15.334881190102895
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Most machine learning (ML) systems assume stationary and matching data
distributions during training and deployment. This is often a false assumption.
When ML models are deployed on real devices, data distributions often shift
over time due to changes in environmental factors, sensor characteristics, and
task-of-interest. While it is possible to have a human-in-the-loop to monitor
for distribution shifts and engineer new architectures in response to these
shifts, such a setup is not cost-effective. Instead, non-stationary automated
ML (AutoML) models are needed. This paper presents the
Encoder-Adaptor-Reconfigurator (EAR) framework for efficient continual learning
under domain shifts. The EAR framework uses a fixed deep neural network (DNN)
feature encoder and trains shallow networks on top of the encoder to handle
novel data. The EAR framework is capable of 1) detecting when new data is
out-of-distribution (OOD) by combining DNNs with hyperdimensional computing
(HDC), 2) identifying low-parameter neural adaptors to adapt the model to the
OOD data using zero-shot neural architecture search (ZS-NAS), and 3) minimizing
catastrophic forgetting on previous tasks by progressively growing the neural
architecture as needed and dynamically routing data through the appropriate
adaptors and reconfigurators for handling domain-incremental and
class-incremental continual learning. We systematically evaluate our approach
on several benchmark datasets for domain adaptation and demonstrate strong
performance compared to state-of-the-art algorithms for OOD detection and
few-/zero-shot NAS.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Toward Efficient Convolutional Neural Networks With Structured Ternary Patterns [1.1965844936801797]
Convolutional neural networks (ConvNets) exert severe demands on local device resources.
This brief presents work toward utilizing static convolutional filters to design efficient ConvNet architectures.
arXiv Detail & Related papers (2024-07-20T10:18:42Z) - DOMINO: Domain-invariant Hyperdimensional Classification for
Multi-Sensor Time Series Data [14.434647668734184]
We propose DOMINO, a novel HDC learning framework addressing the distribution shift problem in noisy multi-sensor time-series data.
DOMINO achieves on average 2.04% higher accuracy than state-of-the-art (SOTA) DNN-based domain generalization techniques, and delivers 16.34x faster training and 2.89x faster inference.
arXiv Detail & Related papers (2023-08-07T04:44:12Z) - Online Evolutionary Neural Architecture Search for Multivariate
Non-Stationary Time Series Forecasting [72.89994745876086]
This work presents the Online Neuro-Evolution-based Neural Architecture Search (ONE-NAS) algorithm.
ONE-NAS is a novel neural architecture search method capable of automatically designing and dynamically training recurrent neural networks (RNNs) for online forecasting tasks.
Results demonstrate that ONE-NAS outperforms traditional statistical time series forecasting methods.
arXiv Detail & Related papers (2023-02-20T22:25:47Z) - Neural Attentive Circuits [93.95502541529115]
We introduce a general purpose, yet modular neural architecture called Neural Attentive Circuits (NACs)
NACs learn the parameterization and a sparse connectivity of neural modules without using domain knowledge.
NACs achieve an 8x speedup at inference time while losing less than 3% performance.
arXiv Detail & Related papers (2022-10-14T18:00:07Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
We construct a dataset of neural network checkpoints and train a generative model on the parameters.
We find that our approach successfully generates parameters for a wide range of loss prompts.
We apply our method to different neural network architectures and tasks in supervised and reinforcement learning.
arXiv Detail & Related papers (2022-09-26T17:59:58Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Transformer-Based Behavioral Representation Learning Enables Transfer
Learning for Mobile Sensing in Small Datasets [4.276883061502341]
We provide a neural architecture framework for mobile sensing data that can learn generalizable feature representations from time series.
This architecture combines benefits from CNN and Trans-former architectures to enable better prediction performance.
arXiv Detail & Related papers (2021-07-09T22:26:50Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
arXiv Detail & Related papers (2021-04-12T23:19:49Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Wireless Localisation in WiFi using Novel Deep Architectures [4.541069830146568]
This paper studies the indoor localisation of WiFi devices based on a commodity chipset and standard channel sounding.
We present a novel shallow neural network (SNN) in which features are extracted from the channel state information corresponding to WiFi subcarriers received on different antennas.
arXiv Detail & Related papers (2020-10-16T22:48:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.