Retrieval Augmented Generation Integrated Large Language Models in Smart Contract Vulnerability Detection
- URL: http://arxiv.org/abs/2407.14838v1
- Date: Sat, 20 Jul 2024 10:46:42 GMT
- Title: Retrieval Augmented Generation Integrated Large Language Models in Smart Contract Vulnerability Detection
- Authors: Jeffy Yu,
- Abstract summary: Decentralized Finance (DeFi) has been accompanied by substantial financial losses due to smart contract vulnerabilities.
With attacks becoming more frequent, the necessity and demand for auditing services has escalated.
This study builds upon existing frameworks by integrating Retrieval-Augmented Generation (RAG) with large language models (LLMs)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid growth of Decentralized Finance (DeFi) has been accompanied by substantial financial losses due to smart contract vulnerabilities, underscoring the critical need for effective security auditing. With attacks becoming more frequent, the necessity and demand for auditing services has escalated. This especially creates a financial burden for independent developers and small businesses, who often have limited available funding for these services. Our study builds upon existing frameworks by integrating Retrieval-Augmented Generation (RAG) with large language models (LLMs), specifically employing GPT-4-1106 for its 128k token context window. We construct a vector store of 830 known vulnerable contracts, leveraging Pinecone for vector storage, OpenAI's text-embedding-ada-002 for embeddings, and LangChain to construct the RAG-LLM pipeline. Prompts were designed to provide a binary answer for vulnerability detection. We first test 52 smart contracts 40 times each against a provided vulnerability type, verifying the replicability and consistency of the RAG-LLM. Encouraging results were observed, with a 62.7% success rate in guided detection of vulnerabilities. Second, we challenge the model under a "blind" audit setup, without the vulnerability type provided in the prompt, wherein 219 contracts undergo 40 tests each. This setup evaluates the general vulnerability detection capabilities without hinted context assistance. Under these conditions, a 60.71% success rate was observed. While the results are promising, we still emphasize the need for human auditing at this time. We provide this study as a proof of concept for a cost-effective smart contract auditing process, moving towards democratic access to security.
Related papers
- A Context-Driven Approach for Co-Auditing Smart Contracts with The Support of GPT-4 code interpreter [15.28361088402754]
This paper introduces a novel context-driven prompting technique for smart contract co-auditing.
Our approach employs three techniques for context scoping and augmentation, encompassing code scoping to chunk long code into self-contained code segments.
Our method demonstrated a detection rate of 96% for vulnerable functions, outperforming the native prompting approach, which detected only 53%.
arXiv Detail & Related papers (2024-06-26T05:14:35Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.
We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.
We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - Static Application Security Testing (SAST) Tools for Smart Contracts: How Far Are We? [14.974832502863526]
In recent years, the importance of smart contract security has been heightened by the increasing number of attacks against them.
To address this issue, a multitude of static application security testing (SAST) tools have been proposed for detecting vulnerabilities in smart contracts.
In this paper, we propose an up-to-date and fine-grained taxonomy that includes 45 unique vulnerability types for smart contracts.
arXiv Detail & Related papers (2024-04-28T13:40:18Z) - FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuard is the first framework for fault type and zone classification resilient to adversarial attacks.
We propose a low-complexity fault prediction model and an online adversarial training technique to enhance robustness.
Our model outclasses the state-of-the-art for resilient fault prediction benchmarking, with an accuracy of up to 0.958.
arXiv Detail & Related papers (2024-03-26T08:51:23Z) - Efficiently Detecting Reentrancy Vulnerabilities in Complex Smart Contracts [35.26195628798847]
Existing vulnerability detection tools perform poorly in terms of efficiency and successful detection rates for vulnerabilities in complex contracts.
SliSE provides a robust and efficient method for detection of Reentrancy vulnerabilities for complex contracts.
arXiv Detail & Related papers (2024-03-17T16:08:30Z) - Evaluation of ChatGPT's Smart Contract Auditing Capabilities Based on
Chain of Thought [8.04987973069845]
This study explores the potential of enhancing smart contract security audits using the GPT-4 model.
We utilized a dataset of 35 smart contracts from the SolidiFI-benchmark vulnerability library, containing 732 vulnerabilities.
We found GPT-4 performed poorly in detecting smart contract vulnerabilities, with a high Precision of 96.6%, but a low Recall of 37.8%, and an F1-score of 41.1%.
arXiv Detail & Related papers (2024-02-19T10:33:29Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL) offers collaborative model training without data sharing.
FL is vulnerable to backdoor attacks, where poisoned model weights lead to compromised system integrity.
We present G$2$uardFL, a protective framework that reinterprets the identification of malicious clients as an attributed graph clustering problem.
arXiv Detail & Related papers (2023-06-08T07:15:04Z) - Smart Contract and DeFi Security Tools: Do They Meet the Needs of
Practitioners? [10.771021805354911]
Attacks targeting smart contracts are increasing, causing an estimated $6.45 billion in financial losses.
We aim to shed light on the effectiveness of automated security tools in identifying vulnerabilities that can lead to high-profile attacks.
Our findings reveal a stark reality: the tools could have prevented a mere 8% of the attacks in our dataset, amounting to $149 million out of the $2.3 billion in losses.
arXiv Detail & Related papers (2023-04-06T10:27:19Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.