論文の概要: Self-supervised transformer-based pre-training method with General Plant Infection dataset
- arxiv url: http://arxiv.org/abs/2407.14911v1
- Date: Sat, 20 Jul 2024 15:48:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 20:09:56.895602
- Title: Self-supervised transformer-based pre-training method with General Plant Infection dataset
- Title(参考訳): 植物汎用感染データセットを用いた自己教師型トランスフォーマーによる事前学習法
- Authors: Zhengle Wang, Ruifeng Wang, Minjuan Wang, Tianyun Lai, Man Zhang,
- Abstract要約: 本研究では、コントラスト学習とマスクド画像モデリング(MIM)を組み合わせた高度なネットワークアーキテクチャを提案する。
提案するネットワークアーキテクチャは,植物害虫や病原体認識タスクに対処し,優れた検出精度を実現する。
私たちのコードとデータセットは、植物害虫の研究と病気の認識を促進するために公開されます。
- 参考スコア(独自算出の注目度): 3.969851116372513
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pest and disease classification is a challenging issue in agriculture. The performance of deep learning models is intricately linked to training data diversity and quantity, posing issues for plant pest and disease datasets that remain underdeveloped. This study addresses these challenges by constructing a comprehensive dataset and proposing an advanced network architecture that combines Contrastive Learning and Masked Image Modeling (MIM). The dataset comprises diverse plant species and pest categories, making it one of the largest and most varied in the field. The proposed network architecture demonstrates effectiveness in addressing plant pest and disease recognition tasks, achieving notable detection accuracy. This approach offers a viable solution for rapid, efficient, and cost-effective plant pest and disease detection, thereby reducing agricultural production costs. Our code and dataset will be publicly available to advance research in plant pest and disease recognition the GitHub repository at https://github.com/WASSER2545/GPID-22
- Abstract(参考訳): 害虫と病気の分類は農業において難しい問題である。
深層学習モデルの性能は、データの多様性と量の訓練と密接に関連しており、未開発のままの植物害虫や疾病データセットに問題がある。
本研究では,コントラシブ・ラーニングとマスケッド・イメージ・モデリング(MIM)を組み合わせた包括的データセットの構築と,高度なネットワークアーキテクチャを提案することにより,これらの課題に対処する。
このデータセットは多種多様な植物種と害虫の分類からなり、この地域で最大かつ最も多様である。
提案するネットワークアーキテクチャは,植物害虫や病原体認識タスクに対処し,優れた検出精度を実現する。
このアプローチは、迅速で効率的でコスト効率のよい植物害虫と病気検出のための実行可能なソリューションを提供し、それによって農業生産コストを削減します。
私たちのコードとデータセットは、GitHubリポジトリのhttps://github.com/WASSER2545/GPID-22で、植物害虫と病気の認識に関する研究を進めるために公開されます。
関連論文リスト
- Multi-Class Plant Leaf Disease Detection: A CNN-based Approach with Mobile App Integration [0.0]
植物病は農業の生産性に大きな影響を及ぼし、経済的な損失と食料の安全を損なう。
本研究では, 画像処理, 機械学習, 深層学習, 移動技術の統合に着目し, 植物病検出の最先端技術について検討する。
植物葉の高分解能画像が捉えられ、畳み込みニューラルネットワーク(CNN)を用いて分析された。
このモデルは、複数の作物や病気の種類を含む多様なデータセットに基づいて訓練され、98.14%の精度で診断された。
論文 参考訳(メタデータ) (2024-08-26T07:16:41Z) - Generating Diverse Agricultural Data for Vision-Based Farming Applications [74.79409721178489]
このモデルは, 植物の成長段階, 土壌条件の多様性, 照明条件の異なるランダム化フィールド配置をシミュレートすることができる。
我々のデータセットにはセマンティックラベル付き12,000の画像が含まれており、精密農業におけるコンピュータビジョンタスクの包括的なリソースを提供する。
論文 参考訳(メタデータ) (2024-03-27T08:42:47Z) - AMaizeD: An End to End Pipeline for Automatic Maize Disease Detection [0.0]
AMaizeDは、ドローンから得られたマルチスペクトル画像を用いて、トウモロコシの作物の病気を早期に検出する自動化フレームワークである。
提案するフレームワークは,コンボリューションニューラルネットワーク(CNN)を特徴抽出器とセグメンテーション技術に組み合わせて,トウモロコシの植物とその関連疾患を同定する。
論文 参考訳(メタデータ) (2023-07-23T19:58:40Z) - Detection of healthy and diseased crops in drone captured images using
Deep Learning [0.0]
病気によって引き起こされる植物の正常な状態の破壊は、しばしば本質的な植物活動に干渉する。
ドローン画像を用いた植物病の効率的な検出のための深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-22T21:15:12Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
植物葉病の検出・分類のための機械学習手法を提案する。
私たちは、AWS SageMaker上でスケーラブルな転送学習を使用して、リアルタイムの実用的なユーザビリティのために、AWS DeepLensにインポートしています。
果実や野菜の健康・不健康な葉の広範な画像データセットに関する実験では,植物葉病のリアルタイム診断で98.78%の精度を示した。
論文 参考訳(メタデータ) (2020-09-09T05:23:34Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Two-View Fine-grained Classification of Plant Species [66.75915278733197]
本研究では,2視点の葉のイメージ表現に基づく新しい手法と,植物種の粒度認識のための階層的分類戦略を提案する。
シームズ畳み込みニューラルネットワークに基づく深度測定は、多数のトレーニングサンプルへの依存を減らし、新しい植物種に拡張性を持たせるために用いられる。
論文 参考訳(メタデータ) (2020-05-18T21:57:47Z) - The Plant Pathology 2020 challenge dataset to classify foliar disease of
apples [0.0]
米国のリンゴ果樹園は、多くの病原体や昆虫から常に脅威にさらされている。病気管理の適正かつタイムリーな展開は、早期の疾患検出に依存している。
我々は,複数のリンゴ葉病の高画質・実生症状画像3,651枚を手作業で取得した。
リンゴの皮、スギのリンゴのさび、健康な葉のパイロットデータセットを作成するために専門家が注釈を付けたサブセットが、Kaggleコミュニティの'Plant Pathology Challenge'で利用可能になった。
論文 参考訳(メタデータ) (2020-04-24T19:36:37Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。