Strongly Isomorphic Neural Optimal Transport Across Incomparable Spaces
- URL: http://arxiv.org/abs/2407.14957v1
- Date: Sat, 20 Jul 2024 18:27:11 GMT
- Title: Strongly Isomorphic Neural Optimal Transport Across Incomparable Spaces
- Authors: Athina Sotiropoulou, David Alvarez-Melis,
- Abstract summary: We present a novel neural formulation of the Gromov-Monge problem rooted in one of its fundamental properties.
We operationalize this property by decomposing the learnable OT map into two components.
Our framework provides a promising approach to learn OT maps across diverse spaces.
- Score: 7.535219325248997
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimal Transport (OT) has recently emerged as a powerful framework for learning minimal-displacement maps between distributions. The predominant approach involves a neural parametrization of the Monge formulation of OT, typically assuming the same space for both distributions. However, the setting across ``incomparable spaces'' (e.g., of different dimensionality), corresponding to the Gromov- Wasserstein distance, remains underexplored, with existing methods often imposing restrictive assumptions on the cost function. In this paper, we present a novel neural formulation of the Gromov-Monge (GM) problem rooted in one of its fundamental properties: invariance to strong isomorphisms. We operationalize this property by decomposing the learnable OT map into two components: (i) an approximate strong isomorphism between the source distribution and an intermediate reference distribution, and (ii) a GM-optimal map between this reference and the target distribution. Our formulation leverages and extends the Monge gap regularizer of Uscidda & Cuturi (2023) to eliminate the need for complex architectural requirements of other neural OT methods, yielding a simple but practical method that enjoys favorable theoretical guarantees. Our preliminary empirical results show that our framework provides a promising approach to learn OT maps across diverse spaces.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Distribution-Dependent Rates for Multi-Distribution Learning [26.38831409926518]
Recent multi-distribution learning framework tackles this objective in a dynamic interaction with the environment.
We provide distribution-dependent guarantees in the MDL regime, that scale with suboptimality gaps and result in superior dependence on the sample size.
We devise an adaptive optimistic algorithm, LCB-DR, that showcases enhanced dependence on the gaps, mirroring the contrast between uniform and optimistic allocation in the multi-armed bandit literature.
arXiv Detail & Related papers (2023-12-20T15:50:16Z) - Generalized Schrödinger Bridge Matching [54.171931505066]
Generalized Schr"odinger Bridge (GSB) problem setup is prevalent in many scientific areas both within and without machine learning.
We propose Generalized Schr"odinger Bridge Matching (GSBM), a new matching algorithm inspired by recent advances.
We show that such a generalization can be cast as solving conditional optimal control, for which variational approximations can be used.
arXiv Detail & Related papers (2023-10-03T17:42:11Z) - Normalizing flow sampling with Langevin dynamics in the latent space [12.91637880428221]
Normalizing flows (NF) use a continuous generator to map a simple latent (e.g. Gaussian) distribution, towards an empirical target distribution associated with a training data set.
Since standard NF implement differentiable maps, they may suffer from pathological behaviors when targeting complex distributions.
This paper proposes a new Markov chain Monte Carlo algorithm to sample from the target distribution in the latent domain before transporting it back to the target domain.
arXiv Detail & Related papers (2023-05-20T09:31:35Z) - Turning Normalizing Flows into Monge Maps with Geodesic Gaussian
Preserving Flows [0.0]
This paper introduces a method to transform any trained NF into a more OT-efficient version without changing the final density.
We do so by learning a rearrangement of the source (Gaussian) distribution that minimizes the OT cost between the source and the final density.
The proposed method leads to smooth flows with reduced OT cost for several existing models without affecting the model performance.
arXiv Detail & Related papers (2022-09-22T09:16:42Z) - Optimal Scaling for Locally Balanced Proposals in Discrete Spaces [65.14092237705476]
We show that efficiency of Metropolis-Hastings (M-H) algorithms in discrete spaces can be characterized by an acceptance rate that is independent of the target distribution.
Knowledge of the optimal acceptance rate allows one to automatically tune the neighborhood size of a proposal distribution in a discrete space, directly analogous to step-size control in continuous spaces.
arXiv Detail & Related papers (2022-09-16T22:09:53Z) - Cooperative Distribution Alignment via JSD Upper Bound [7.071749623370137]
Unsupervised distribution alignment estimates a transformation that maps two or more source distributions to a shared aligned distribution.
This task has many applications including generative modeling, unsupervised domain adaptation, and socially aware learning.
We propose to unify and generalize previous flow-based approaches under a single non-adversarial framework.
arXiv Detail & Related papers (2022-07-05T20:09:03Z) - Cycle Consistent Probability Divergences Across Different Spaces [38.43511529063335]
Discrepancy measures between probability distributions are at the core of statistical inference and machine learning.
This work proposes a novel unbalanced Monge optimal transport formulation for matching, up to isometries, distributions on different spaces.
arXiv Detail & Related papers (2021-11-22T16:35:58Z) - Margin Preserving Self-paced Contrastive Learning Towards Domain
Adaptation for Medical Image Segmentation [51.93711960601973]
We propose a novel margin preserving self-paced contrastive Learning model for cross-modal medical image segmentation.
With the guidance of progressively refined semantic prototypes, a novel margin preserving contrastive loss is proposed to boost the discriminability of embedded representation space.
Experiments on cross-modal cardiac segmentation tasks demonstrate that MPSCL significantly improves semantic segmentation performance.
arXiv Detail & Related papers (2021-03-15T15:23:10Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - Generalization Properties of Optimal Transport GANs with Latent
Distribution Learning [52.25145141639159]
We study how the interplay between the latent distribution and the complexity of the pushforward map affects performance.
Motivated by our analysis, we advocate learning the latent distribution as well as the pushforward map within the GAN paradigm.
arXiv Detail & Related papers (2020-07-29T07:31:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.