Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs
- URL: http://arxiv.org/abs/2407.14994v1
- Date: Sat, 20 Jul 2024 22:05:30 GMT
- Title: Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs
- Authors: Karl Van Eeden Risager, Torkan Gholamalizadeh, Mostafa Mehdipour Ghazi,
- Abstract summary: This study introduces a novel deep learning-based non-reference approach to assess brain MRI quality by training a 3D ResNet.
The network is designed to estimate quality across six distinct artifacts commonly encountered in MRI scans.
Results demonstrate superior performance in accurately estimating distortions and reflecting image quality from multiple perspectives.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating high-quality synthetic data is crucial for addressing challenges in medical imaging, such as domain adaptation, data scarcity, and privacy concerns. Existing image quality metrics often rely on reference images, are tailored for group comparisons, or are intended for 2D natural images, limiting their efficacy in complex domains like medical imaging. This study introduces a novel deep learning-based non-reference approach to assess brain MRI quality by training a 3D ResNet. The network is designed to estimate quality across six distinct artifacts commonly encountered in MRI scans. Additionally, a diffusion model is trained on diverse datasets to generate synthetic 3D images of high fidelity. The approach leverages several datasets for training and comprehensive quality assessment, benchmarking against state-of-the-art metrics for real and synthetic images. Results demonstrate superior performance in accurately estimating distortions and reflecting image quality from multiple perspectives. Notably, the method operates without reference images, indicating its applicability for evaluating deep generative models. Besides, the quality scores in the [0, 1] range provide an intuitive assessment of image quality across heterogeneous datasets. Evaluation of generated images offers detailed insights into specific artifacts, guiding strategies for improving generative models to produce high-quality synthetic images. This study presents the first comprehensive method for assessing the quality of real and synthetic 3D medical images in MRI contexts without reliance on reference images.
Related papers
- Automated MRI Quality Assessment of Brain T1-weighted MRI in Clinical Data Warehouses: A Transfer Learning Approach Relying on Artefact Simulation [3.115212915804253]
This study presents an innovative transfer learning method for automated quality control of 3D gradient echo T1-weighted brain MRIs within a clinical data warehouse.
We first intentionally corrupt images from research datasets by inducing poorer contrast, adding noise and introducing motion artefacts.
Three artefact-specific models are pre-trained using these corrupted images to detect distinct types of artefacts.
arXiv Detail & Related papers (2024-06-18T09:53:07Z) - Genetic InfoMax: Exploring Mutual Information Maximization in
High-Dimensional Imaging Genetics Studies [50.11449968854487]
Genome-wide association studies (GWAS) are used to identify relationships between genetic variations and specific traits.
Representation learning for imaging genetics is largely under-explored due to the unique challenges posed by GWAS.
We introduce a trans-modal learning framework Genetic InfoMax (GIM) to address the specific challenges of GWAS.
arXiv Detail & Related papers (2023-09-26T03:59:21Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Medical Diffusion -- Denoising Diffusion Probabilistic Models for 3D
Medical Image Generation [0.6486409713123691]
We show that diffusion probabilistic models can synthesize high quality medical imaging data.
We provide quantitative measurements of their performance through a reader study with two medical experts.
We demonstrate that synthetic images can be used in a self-supervised pre-training and improve the performance of breast segmentation models when data is scarce.
arXiv Detail & Related papers (2022-11-07T08:37:48Z) - Evaluating the Quality and Diversity of DCGAN-based Generatively
Synthesized Diabetic Retinopathy Imagery [0.07499722271664144]
Publicly available diabetic retinopathy (DR) datasets are imbalanced, containing limited numbers of images with DR.
The imbalance can be addressed using Geneversarative Adrial Networks (GANs) to augment the datasets with synthetic images.
To evaluate the quality and diversity of synthetic images, several evaluation metrics, such as Multi-Scale Structural Similarity Index (MS-SSIM), Cosine Distance (CD), and Fr't Inception Distance (FID) are used.
arXiv Detail & Related papers (2022-08-10T23:50:01Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Image Quality Assessment for Magnetic Resonance Imaging [4.05136808278614]
Image quality assessment (IQA) algorithms aim to reproduce the human's perception of the image quality.
We use outputs of neural network models trained to solve problems relevant to MRI.
Seven trained radiologists assess distorted images, with their verdicts then correlated with 35 different image quality metrics.
arXiv Detail & Related papers (2022-03-15T11:52:29Z) - IMAGINE: Image Synthesis by Image-Guided Model Inversion [79.4691654458141]
We introduce an inversion based method, denoted as IMAge-Guided model INvErsion (IMAGINE), to generate high-quality and diverse images.
We leverage the knowledge of image semantics from a pre-trained classifier to achieve plausible generations.
IMAGINE enables the synthesis procedure to simultaneously 1) enforce semantic specificity constraints during the synthesis, 2) produce realistic images without generator training, and 3) give users intuitive control over the generation process.
arXiv Detail & Related papers (2021-04-13T02:00:24Z) - Synthetic Sample Selection via Reinforcement Learning [8.099072894865802]
We propose a reinforcement learning based synthetic sample selection method that learns to choose synthetic images containing reliable and informative features.
In experiments on a cervical dataset and a lymph node dataset, the image classification performance is improved by 8.1% and 2.3%, respectively.
arXiv Detail & Related papers (2020-08-26T01:34:19Z) - Diffusion-Weighted Magnetic Resonance Brain Images Generation with
Generative Adversarial Networks and Variational Autoencoders: A Comparison
Study [55.78588835407174]
We show that high quality, diverse and realistic-looking diffusion-weighted magnetic resonance images can be synthesized using deep generative models.
We present two networks, the Introspective Variational Autoencoder and the Style-Based GAN, that qualify for data augmentation in the medical field.
arXiv Detail & Related papers (2020-06-24T18:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.