MRI Image Generation Based on Text Prompts
- URL: http://arxiv.org/abs/2505.22682v1
- Date: Fri, 23 May 2025 03:01:22 GMT
- Title: MRI Image Generation Based on Text Prompts
- Authors: Xinxian Fan, Mengye Lyu,
- Abstract summary: This study explores the use of text-prompted MRI image generation with the Stable Diffusion (SD) model to address challenges in acquiring real MRI datasets.<n>The SD model, pre-trained on natural images, was fine-tuned using the 3T fastMRI dataset and the 0.3T M4Raw dataset.<n>The performance of the fine-tuned model was evaluated using quantitative metrics, including Fr'echet Inception Distance (FID) and Multi-Scale Structural Similarity (MS-SSIM)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the use of text-prompted MRI image generation with the Stable Diffusion (SD) model to address challenges in acquiring real MRI datasets, such as high costs, limited rare case samples, and privacy concerns. The SD model, pre-trained on natural images, was fine-tuned using the 3T fastMRI dataset and the 0.3T M4Raw dataset, with the goal of generating brain T1, T2, and FLAIR images across different magnetic field strengths. The performance of the fine-tuned model was evaluated using quantitative metrics,including Fr\'echet Inception Distance (FID) and Multi-Scale Structural Similarity (MS-SSIM), showing improvements in image quality and semantic consistency with the text prompts. To further evaluate the model's potential, a simple classification task was carried out using a small 0.35T MRI dataset, demonstrating that the synthetic images generated by the fine-tuned SD model can effectively augment training datasets and improve the performance of MRI constrast classification tasks. Overall, our findings suggest that text-prompted MRI image generation is feasible and can serve as a useful tool for medical AI applications.
Related papers
- ZECO: ZeroFusion Guided 3D MRI Conditional Generation [11.645873358288648]
ZECO is a ZeroFusion guided 3D MRI conditional generation framework.<n>It extracts, compresses, and generates high-fidelity MRI images with corresponding 3D segmentation masks.<n>ZECO outperforms state-of-the-art models in both quantitative and qualitative evaluations on Brain MRI datasets.
arXiv Detail & Related papers (2025-03-24T00:04:52Z) - Pretext Task Adversarial Learning for Unpaired Low-field to Ultra High-field MRI Synthesis [5.998097558786736]
Low-field MRI often suffers from a reduced signal-to-noise ratio (SNR) and spatial resolution compared to high-field MRI.<n>We propose a Pretext Task Adversarial (PTA) learning framework for high-field MRI synthesis from low-field MRI data.
arXiv Detail & Related papers (2025-03-07T11:28:55Z) - ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.<n>We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - MRI Reconstruction with Regularized 3D Diffusion Model (R3DM) [2.842800539489865]
We propose a 3D MRI reconstruction method that leverages a regularized 3D diffusion model combined with optimization method.<n>By incorporating diffusion based priors, our method improves image quality, reduces noise, and enhances the overall fidelity of 3D MRI reconstructions.
arXiv Detail & Related papers (2024-12-25T00:55:05Z) - MRGen: Segmentation Data Engine For Underrepresented MRI Modalities [59.61465292965639]
Training medical image segmentation models for rare yet clinically significant imaging modalities is challenging due to the scarcity of annotated data.<n>This paper investigates leveraging generative models to synthesize training data, to train segmentation models for underrepresented modalities.
arXiv Detail & Related papers (2024-12-04T16:34:22Z) - Coordinate-Based Neural Representation Enabling Zero-Shot Learning for 3D Multiparametric Quantitative MRI [4.707353256136099]
We propose SUMMIT, an innovative imaging methodology that includes data acquisition and an unsupervised reconstruction for simultaneous multiparametric qMRI.
The proposed unsupervised approach for qMRI reconstruction also introduces a novel zero-shot learning paradigm for multiparametric imaging applicable to various medical imaging modalities.
arXiv Detail & Related papers (2024-10-02T14:13:06Z) - Towards General Text-guided Image Synthesis for Customized Multimodal Brain MRI Generation [51.28453192441364]
Multimodal brain magnetic resonance (MR) imaging is indispensable in neuroscience and neurology.
Current MR image synthesis approaches are typically trained on independent datasets for specific tasks.
We present TUMSyn, a Text-guided Universal MR image Synthesis model, which can flexibly generate brain MR images.
arXiv Detail & Related papers (2024-09-25T11:14:47Z) - Non-Reference Quality Assessment for Medical Imaging: Application to Synthetic Brain MRIs [0.0]
This study introduces a novel deep learning-based non-reference approach to assess brain MRI quality by training a 3D ResNet.
The network is designed to estimate quality across six distinct artifacts commonly encountered in MRI scans.
Results demonstrate superior performance in accurately estimating distortions and reflecting image quality from multiple perspectives.
arXiv Detail & Related papers (2024-07-20T22:05:30Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.