Transformative Influence of LLM and AI Tools in Student Social Media Engagement: Analyzing Personalization, Communication Efficiency, and Collaborative Learning
- URL: http://arxiv.org/abs/2407.15012v1
- Date: Sat, 15 Jun 2024 01:05:56 GMT
- Title: Transformative Influence of LLM and AI Tools in Student Social Media Engagement: Analyzing Personalization, Communication Efficiency, and Collaborative Learning
- Authors: Masoud Bashiri, Kamran Kowsari,
- Abstract summary: AI-driven applications are transforming how students interact with social media.
Students engaging with AI-enhanced social media platforms report higher academic performance.
AI algorithms effectively match students based on shared academic interests and career goals.
- Score: 0.18416014644193066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The advent of Large Language Models (LLMs) and Artificial Intelligence (AI) tools has revolutionized various facets of our lives, particularly in the realm of social media. For students, these advancements have unlocked unprecedented opportunities for learning, collaboration, and personal growth. AI-driven applications are transforming how students interact with social media, offering personalized content and recommendations, and enabling smarter, more efficient communication. Recent studies utilizing data from UniversityCube underscore the profound impact of AI tools on students' academic and social experiences. These studies reveal that students engaging with AI-enhanced social media platforms report higher academic performance, enhanced critical thinking skills, and increased engagement in collaborative projects. Moreover, AI tools assist in filtering out distracting content, allowing students to concentrate more on educational materials and pertinent discussions. The integration of LLMs in social media has further facilitated improved peer-to-peer communication and mentorship opportunities. AI algorithms effectively match students based on shared academic interests and career goals, fostering a supportive and intellectually stimulating online community, thereby contributing to increased student satisfaction and retention rates. In this article, we delve into the data provided by UniversityCube to explore how LLMs and AI tools are specifically transforming social media for students. Through case studies and statistical analyses, we offer a comprehensive understanding of the educational and social benefits these technologies offer. Our exploration highlights the potential of AI-driven tools to create a more enriched, efficient, and supportive educational environment for students in the digital age.
Related papers
- From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Socialized Learning: A Survey of the Paradigm Shift for Edge Intelligence in Networked Systems [62.252355444948904]
This paper presents the findings of a literature review on the integration of edge intelligence (EI) and socialized learning (SL)
SL is a learning paradigm predicated on social principles and behaviors, aimed at amplifying the collaborative capacity and collective intelligence of agents.
We elaborate on three integrated components: socialized architecture, socialized training, and socialized inference, analyzing their strengths and weaknesses.
arXiv Detail & Related papers (2024-04-20T11:07:29Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
Building socially-intelligent AI agents (Social-AI) is a multidisciplinary, multimodal research goal.
We identify a set of underlying technical challenges and open questions for researchers across computing communities to advance Social-AI.
arXiv Detail & Related papers (2024-04-17T02:57:42Z) - Social Intelligence Data Infrastructure: Structuring the Present and Navigating the Future [59.78608958395464]
We build a Social AI Data Infrastructure, which consists of a comprehensive social AI taxonomy and a data library of 480 NLP datasets.
Our infrastructure allows us to analyze existing dataset efforts, and also evaluate language models' performance in different social intelligence aspects.
We show there is a need for multifaceted datasets, increased diversity in language and culture, more long-tailed social situations, and more interactive data in future social intelligence data efforts.
arXiv Detail & Related papers (2024-02-28T00:22:42Z) - I would love this to be like an assistant, not the teacher: a voice of the customer perspective of what distance learning students want from an Artificial Intelligence Digital Assistant [0.0]
This study examined the perceptions of ten online and distance learning students regarding the design of a hypothetical AI Digital Assistant (AIDA)
All participants agreed on the usefulness of such an AI tool while studying and reported benefits from using it for real-time assistance and query resolution, support for academic tasks, personalisation and accessibility, together with emotional and social support.
Students' concerns related to the ethical and social implications of implementing AIDA, data privacy and data use, operational challenges, academic integrity and misuse, and the future of education.
arXiv Detail & Related papers (2024-02-16T08:10:41Z) - Build Your Own Robot Friend: An Open-Source Learning Module for
Accessible and Engaging AI Education [10.864182981901271]
We developed an open-source learning module for college and high school students, which allows students to build their own robot companion.
This open platform can be used to provide hands-on experience and introductory knowledge about various aspects of AI.
Because of the social and personal nature of a socially assistive robot companion, this module also puts a special emphasis on human-centered AI.
arXiv Detail & Related papers (2024-01-06T08:03:08Z) - Socially Responsible Computing in an Introductory Course [2.7426067696238468]
Given the potential for technology to inflict harm and injustice on society, it is imperative that we cultivate a sense of social responsibility among our students.
We piloted an introductory Java programming course in which activities engaging students in ethical and socially responsible considerations were integrated across modules.
The data from the class suggests that the students found the inclusion of the social context in the technical assignments to be more motivating and expressed greater agency in realizing social change.
arXiv Detail & Related papers (2024-01-02T16:52:50Z) - Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education [0.2812395851874055]
This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA) for personalized and adaptive learning in higher education.
The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform.
arXiv Detail & Related papers (2023-09-19T19:31:15Z) - Disadvantaged students increase their academic performance through
collective intelligence exposure in emergency remote learning due to COVID 19 [105.54048699217668]
During the COVID-19 crisis, educational institutions worldwide shifted from face-to-face instruction to emergency remote teaching (ERT) modalities.
We analyzed data on 7,528 undergraduate students and found that cooperative and consensus dynamics among students in discussion forums positively affect their final GPA.
Using natural language processing, we show that first-year students with low academic performance during high school are exposed to more content-intensive posts in discussion forums.
arXiv Detail & Related papers (2022-03-10T20:23:38Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Teaching Tech to Talk: K-12 Conversational Artificial Intelligence
Literacy Curriculum and Development Tools [9.797319790710711]
We evaluate our Conversational Agent Interface for MIT App Inventor and workshop curriculum with respect to AI competencies.
We found students struggled most with the concepts of AI ethics and learning, and recommend emphasizing these topics when teaching.
arXiv Detail & Related papers (2020-09-11T20:52:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.