Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education
- URL: http://arxiv.org/abs/2309.10892v1
- Date: Tue, 19 Sep 2023 19:31:15 GMT
- Title: Artificial Intelligence-Enabled Intelligent Assistant for Personalized
and Adaptive Learning in Higher Education
- Authors: Ramteja Sajja, Yusuf Sermet, Muhammed Cikmaz, David Cwiertny, Ibrahim
Demir
- Abstract summary: This paper presents a novel framework, Artificial Intelligence-Enabled Intelligent Assistant (AIIA) for personalized and adaptive learning in higher education.
The AIIA system leverages advanced AI and Natural Language Processing (NLP) techniques to create an interactive and engaging learning platform.
- Score: 0.2812395851874055
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel framework, Artificial Intelligence-Enabled
Intelligent Assistant (AIIA), for personalized and adaptive learning in higher
education. The AIIA system leverages advanced AI and Natural Language
Processing (NLP) techniques to create an interactive and engaging learning
platform. This platform is engineered to reduce cognitive load on learners by
providing easy access to information, facilitating knowledge assessment, and
delivering personalized learning support tailored to individual needs and
learning styles. The AIIA's capabilities include understanding and responding
to student inquiries, generating quizzes and flashcards, and offering
personalized learning pathways. The research findings have the potential to
significantly impact the design, implementation, and evaluation of AI-enabled
Virtual Teaching Assistants (VTAs) in higher education, informing the
development of innovative educational tools that can enhance student learning
outcomes, engagement, and satisfaction. The paper presents the methodology,
system architecture, intelligent services, and integration with Learning
Management Systems (LMSs) while discussing the challenges, limitations, and
future directions for the development of AI-enabled intelligent assistants in
education.
Related papers
- Artificial Intelligence Ecosystem for Automating Self-Directed Teaching [0.0]
This research introduces an innovative artificial intelligence-driven educational concept designed to optimize self-directed learning.
The system leverages fine-tuned AI models to create an adaptive learning environment that encompasses customized roadmaps, automated presentation generation, and three-dimensional modeling for complex concept visualization.
arXiv Detail & Related papers (2024-11-11T19:00:22Z) - Human-Centric eXplainable AI in Education [0.0]
This paper explores Human-Centric eXplainable AI (HCXAI) in the educational landscape.
It emphasizes its role in enhancing learning outcomes, fostering trust among users, and ensuring transparency in AI-driven tools.
It outlines comprehensive frameworks for developing HCXAI systems that prioritize user understanding and engagement.
arXiv Detail & Related papers (2024-10-18T14:02:47Z) - Generative AI and Its Impact on Personalized Intelligent Tutoring Systems [0.0]
Generative AI enables personalized education through dynamic content generation, real-time feedback, and adaptive learning pathways.
Report explores key applications such as automated question generation, customized feedback mechanisms, and interactive dialogue systems.
Future directions highlight the potential advancements in multimodal AI integration, emotional intelligence in tutoring systems, and the ethical implications of AI-driven education.
arXiv Detail & Related papers (2024-10-14T16:01:01Z) - From MOOC to MAIC: Reshaping Online Teaching and Learning through LLM-driven Agents [78.15899922698631]
MAIC (Massive AI-empowered Course) is a new form of online education that leverages LLM-driven multi-agent systems to construct an AI-augmented classroom.
We conduct preliminary experiments at Tsinghua University, one of China's leading universities.
arXiv Detail & Related papers (2024-09-05T13:22:51Z) - Collaborative Design of AI-Enhanced Learning Activities [0.0]
We develop a formative intervention that enables preservice teachers, in-service teachers, and EdTech specialists to effectively incorporate AI into their teaching practices.
Participants reflect on AI's potential in teaching and learning by exploring different activities that can integrate AI literacy in education, including its ethical considerations and potential for innovative pedagogy.
arXiv Detail & Related papers (2024-07-09T08:34:08Z) - Toward enriched Cognitive Learning with XAI [44.99833362998488]
We introduce an intelligent system (CL-XAI) for Cognitive Learning which is supported by artificial intelligence (AI) tools.
The use of CL-XAI is illustrated with a game-inspired virtual use case where learners tackle problems to enhance problem-solving skills.
arXiv Detail & Related papers (2023-12-19T16:13:47Z) - ActiveAI: Introducing AI Literacy for Middle School Learners with
Goal-based Scenario Learning [0.0]
The ActiveAI project addresses key challenges in AI education for grades 7-9 students.
The app incorporates a variety of learner inputs like sliders, steppers, and collectors to enhance understanding.
The project is currently in the implementation stage, leveraging the intelligent tutor design principles for app development.
arXiv Detail & Related papers (2023-08-21T11:43:43Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z) - Empowering Things with Intelligence: A Survey of the Progress,
Challenges, and Opportunities in Artificial Intelligence of Things [98.10037444792444]
We show how AI can empower the IoT to make it faster, smarter, greener, and safer.
First, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving.
Finally, we summarize some promising applications of AIoT that are likely to profoundly reshape our world.
arXiv Detail & Related papers (2020-11-17T13:14:28Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
We describe various aspects of multiple human intelligences and learning styles, which may impact on a variety of AI problem domains.
Future AI systems will be able not only to communicate with human users and each other, but also to efficiently exchange knowledge and wisdom.
arXiv Detail & Related papers (2020-08-07T21:00:13Z) - Distributed and Democratized Learning: Philosophy and Research
Challenges [80.39805582015133]
We propose a novel design philosophy called democratized learning (Dem-AI)
Inspired by the societal groups of humans, the specialized groups of learning agents in the proposed Dem-AI system are self-organized in a hierarchical structure to collectively perform learning tasks more efficiently.
We present a reference design as a guideline to realize future Dem-AI systems, inspired by various interdisciplinary fields.
arXiv Detail & Related papers (2020-03-18T08:45:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.