論文の概要: Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization
- arxiv url: http://arxiv.org/abs/2407.15085v1
- Date: Sun, 21 Jul 2024 07:50:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:28:49.198400
- Title: Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization
- Title(参考訳): 保存と多様化を学ぶ: 整域一般化のための直交正規化をもつパラメータ効率の良い群
- Authors: Jiajun Hu, Jian Zhang, Lei Qi, Yinghuan Shi, Yang Gao,
- Abstract要約: ドメイン・ドメイン(DG)は、限られたトレーニングデータと見つからないテストデータの間の分散シフトが発生したとき、モデルの性能劣化を避けることを目的としている。
近年、膨大なパラメータを持つ基礎モデルは、膨大なデータセットで事前訓練されており、強力な一般化能力を示している。
我々のフレームワークは5つのDGベンチマークでSOTA性能を実現し、テストコストを増すことなく少数のパラメータをトレーニングするのみである。
- 参考スコア(独自算出の注目度): 28.977757627384165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain generalization (DG) aims to avoid the performance degradation of the model when the distribution shift between the limited training data and unseen test data occurs. Recently, foundation models with enormous parameters have been pre-trained with huge datasets, demonstrating strong generalization ability and showing promising direction for solving the DG problem. However, fully Fine-Tuning (FT) the foundation models results in unsatisfactory out-of-distribution accuracy due to the destroyed pre-trained generalized features. Recently, Parameter-Efficient Fine-Tuning (PEFT) alleviates the above problem by fine-tuning a small portion of the model parameters while keeping the rest frozen, which achieves better generalization performance compared to FT. Nevertheless, PEFT still suffers from the issue of overfitting to the training domains. To address the above issue, we propose Parameter-Efficient Group with Orthogonal regularization (PEGO) for vision transformers, which effectively preserves the generalization ability of the pre-trained network and learns more diverse knowledge compared with conventional PEFT. Specifically, we inject a group of trainable Low-Rank Adaptation (LoRA) modules into the pre-trained model and propose an orthogonal regularization loss to enhance the generalization ability of the model. Our framework achieves SOTA performance on five DG benchmarks, while only requiring training a small number of parameters without adding additional testing cost.
- Abstract(参考訳): ドメイン一般化(DG)は、限られたトレーニングデータと見えないテストデータの間の分散シフトが発生した場合、モデルの性能劣化を回避することを目的としている。
近年、膨大なパラメータを持つ基礎モデルは、膨大なデータセットで事前訓練され、強力な一般化能力を示し、DG問題を解決するための有望な方向を示している。
しかし、基礎モデルの完全微調整(FT)は、事前訓練された一般化された特徴の破壊により、不満足な分配精度をもたらす。
近年,パラメータ効率の良いファインチューニング (PEFT) では,モデルパラメータのごく一部を冷凍状態に保ちながら微調整することで上記の問題を緩和し,FTと比較して一般化性能が向上している。
それでもPEFTは、訓練領域への過度な適合の問題に悩まされている。
上記の課題に対処するために,従来のPEFTと比較して,事前学習ネットワークの一般化能力を効果的に維持し,より多様な知識を学習する視覚変換器のためのパラメータ有効群(PEGO)を提案する。
具体的には、トレーニング可能なローランド適応(LoRA)モジュール群を事前学習モデルに注入し、モデルの一般化能力を高めるために直交正規化損失を提案する。
我々のフレームワークは5つのDGベンチマークでSOTA性能を達成し、テストコストを増すことなく少数のパラメータをトレーニングするのみである。
関連論文リスト
- HG-Adapter: Improving Pre-Trained Heterogeneous Graph Neural Networks with Dual Adapters [53.97380482341493]
事前学習, 即時学習」は, 事前学習したヘテロジニアスグラフニューラルネットワーク(HGNN)のチューニング性能を示す。
本稿では、2つの新しいアダプタと潜在的ラベル付きデータ拡張を組み合わせた統合フレームワークを提案し、事前学習されたHGNNモデルの一般化を改善する。
論文 参考訳(メタデータ) (2024-11-02T06:43:54Z) - PACE: marrying generalization in PArameter-efficient fine-tuning with Consistency rEgularization [35.922096876707975]
PACE は PArameter- efficient fine-tuning with Consistency rEgularization の一般化である。
PACEは、拡張一般化のための勾配を暗黙的に正規化するだけでなく、微調整および事前訓練されたモデルも暗黙的に整列して知識を保持することを示す。
PACEは、VTAB-1k、FGVC、少数ショット学習、ドメイン適応の4つの視覚適応タスクにおいて、既存のPEFTメソッドよりも優れている。
論文 参考訳(メタデータ) (2024-09-25T17:56:00Z) - Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models [68.23649978697027]
Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
論文 参考訳(メタデータ) (2024-07-28T19:18:59Z) - Domain Generalization Guided by Large-Scale Pre-Trained Priors [24.74398777539288]
ドメイン一般化(DG)は、限られたソースドメインからモデルをトレーニングすることを目的としており、未知のターゲットドメインに一般化することができる。
大規模事前訓練型ファインチューン(FT-LP)について紹介する。
FT-LPは、事前訓練されたモデルをDG微調整プロセスに前もって組み込んで、各最適化ステップで事前訓練されたモデルを参照することを保証する。
論文 参考訳(メタデータ) (2024-06-09T03:32:32Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
我々はSparse Increment Fine-Tuning (SIFT) という勾配に基づくスパース微調整アルゴリズムを提案する。
GLUE Benchmark や Instruction-tuning などのタスクで有効性を検証する。
論文 参考訳(メタデータ) (2023-12-19T06:06:30Z) - TEA: Test-time Energy Adaptation [67.4574269851666]
テスト時間適応(TTA)は、テストデータがトレーニング分布から分岐する際のモデル一般化性を改善することを目的としている。
本稿では,対象データ分布に対するモデルによる認識を高めるための,新しいエネルギーベース視点を提案する。
論文 参考訳(メタデータ) (2023-11-24T10:49:49Z) - Generalized Logit Adjustment: Calibrating Fine-tuned Models by Removing Label Bias in Foundation Models [75.9543301303586]
CLIPのようなファンデーションモデルは、追加のトレーニングデータなしで、さまざまなタスクでゼロショット転送を可能にする。
微調整やアンサンブルも一般的に下流のタスクに合うように採用されている。
しかし、先行研究は基礎モデルに固有のバイアスを見落としていると論じる。
論文 参考訳(メタデータ) (2023-10-12T08:01:11Z) - Domain Generalization using Pretrained Models without Fine-tuning [25.489714555859944]
微調整事前訓練モデルは、ドメイン一般化(DG)タスクにおいて一般的なプラクティスである。
ドメイン一般化のための特別アンサンブル学習(SEDGE)という,様々な事前学習モデルを活用するための新しいドメイン一般化パラダイムを提案する。
SEDGEは、DGタスクの最先端メソッドを含む強力なベースラインと比較して、大幅なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2022-03-09T09:33:59Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
generative adversarial network (gans) は、非凹型ミニマックス最適化問題を訓練するために用いられる。
ある理論は、グローバル最適解に対する勾配降下 (gd) の重要性を示している。
ニューラルネットワークジェネレータと線形判別器を併用した多層GANにおいて、GDAは、基礎となる非凹面min-max問題の大域的なサドル点に収束することを示す。
論文 参考訳(メタデータ) (2021-04-12T16:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。