論文の概要: Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models
- arxiv url: http://arxiv.org/abs/2407.19564v1
- Date: Sun, 28 Jul 2024 19:18:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-30 15:45:34.578297
- Title: Forecast-PEFT: Parameter-Efficient Fine-Tuning for Pre-trained Motion Forecasting Models
- Title(参考訳): 予測-PEFT:事前学習した動き予測モデルのためのパラメータ効率の良い微調整
- Authors: Jifeng Wang, Kaouther Messaoud, Yuejiang Liu, Juergen Gall, Alexandre Alahi,
- Abstract要約: Forecast-PEFTは、モデルのパラメータの大部分を凍結し、新しく導入されたプロンプトとアダプタの調整に集中する微調整戦略である。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来のフルチューニング手法よりも優れていた。
Forecast-FTは予測性能をさらに改善し、従来のベースライン法よりも最大9.6%向上した。
- 参考スコア(独自算出の注目度): 68.23649978697027
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent progress in motion forecasting has been substantially driven by self-supervised pre-training. However, adapting pre-trained models for specific downstream tasks, especially motion prediction, through extensive fine-tuning is often inefficient. This inefficiency arises because motion prediction closely aligns with the masked pre-training tasks, and traditional full fine-tuning methods fail to fully leverage this alignment. To address this, we introduce Forecast-PEFT, a fine-tuning strategy that freezes the majority of the model's parameters, focusing adjustments on newly introduced prompts and adapters. This approach not only preserves the pre-learned representations but also significantly reduces the number of parameters that need retraining, thereby enhancing efficiency. This tailored strategy, supplemented by our method's capability to efficiently adapt to different datasets, enhances model efficiency and ensures robust performance across datasets without the need for extensive retraining. Our experiments show that Forecast-PEFT outperforms traditional full fine-tuning methods in motion prediction tasks, achieving higher accuracy with only 17% of the trainable parameters typically required. Moreover, our comprehensive adaptation, Forecast-FT, further improves prediction performance, evidencing up to a 9.6% enhancement over conventional baseline methods. Code will be available at https://github.com/csjfwang/Forecast-PEFT.
- Abstract(参考訳): 運動予測の最近の進歩は、自己監督型事前訓練によって著しく推進されている。
しかし、特定の下流タスク、特にモーション予測に事前訓練されたモデルを適用することは、広範囲な微調整を通じて、しばしば非効率である。
この非効率性は、動き予測がマスクされた事前訓練タスクと密接に一致し、従来のフルチューニング手法がこのアライメントを完全に活用できないために生じる。
そこで本研究では,モデルパラメータの大部分を凍結する微調整戦略であるForecast-PEFTを紹介し,新たに導入されたプロンプトとアダプタの調整に焦点をあてる。
このアプローチは、事前学習された表現を保存するだけでなく、再学習が必要なパラメータの数を著しく削減し、効率を向上する。
この調整された戦略は、異なるデータセットに効率的に適応し、モデルの効率を高め、広範囲な再トレーニングを必要とせずにデータセット全体のロバストなパフォーマンスを確保する。
実験の結果,Forecast-PEFTは動作予測タスクにおいて従来の完全微調整手法よりも優れており,訓練可能なパラメータの17%しか必要とせず,精度が向上していることがわかった。
さらに,我々の総合的な適応であるForecast-FTにより予測性能が向上し,従来のベースライン法よりも最大9.6%向上した。
コードはhttps://github.com/csjfwang/Forecast-PEFT.comから入手できる。
関連論文リスト
- Meta-Learning Adaptable Foundation Models [37.458141335750696]
本稿では,PEFTを組み込んだメタラーニングフレームワークを導入し,未知のタスクに容易に適応可能なモデルを学習する。
この設定では、適応可能なパラメータの集合を見つけるための標準再訓練の準最適性を示す。
次に、これらの理論的洞察をRoBERTaモデルの再訓練に適用し、ConvAI2データセット内の会話の継続を予測する。
論文 参考訳(メタデータ) (2024-10-29T17:24:18Z) - SaRA: High-Efficient Diffusion Model Fine-tuning with Progressive Sparse Low-Rank Adaptation [52.6922833948127]
本研究では,事前学習した拡散モデルにおけるパラメータの重要性について検討する。
本稿では,これらの非効率パラメータをフル活用するための新しいモデル微調整法を提案する。
本手法は,下流アプリケーションにおける事前学習モデルの生成能力を向上する。
論文 参考訳(メタデータ) (2024-09-10T16:44:47Z) - Learn to Preserve and Diversify: Parameter-Efficient Group with Orthogonal Regularization for Domain Generalization [28.977757627384165]
ドメイン・ドメイン(DG)は、限られたトレーニングデータと見つからないテストデータの間の分散シフトが発生したとき、モデルの性能劣化を避けることを目的としている。
近年、膨大なパラメータを持つ基礎モデルは、膨大なデータセットで事前訓練されており、強力な一般化能力を示している。
我々のフレームワークは5つのDGベンチマークでSOTA性能を実現し、テストコストを増すことなく少数のパラメータをトレーニングするのみである。
論文 参考訳(メタデータ) (2024-07-21T07:50:49Z) - Low-rank Attention Side-Tuning for Parameter-Efficient Fine-Tuning [19.17362588650503]
低ランク・アテンション・サイドチューニング (LAST) は低ランク・アテンション・モジュールのみで構成されるサイドネットワークを訓練する。
LASTは、複数の最適化目標に対して高い並列性を示し、下流タスク適応において非常に効率的である。
論文 参考訳(メタデータ) (2024-02-06T14:03:15Z) - Sparse is Enough in Fine-tuning Pre-trained Large Language Models [98.46493578509039]
我々はSparse Increment Fine-Tuning (SIFT) という勾配に基づくスパース微調整アルゴリズムを提案する。
GLUE Benchmark や Instruction-tuning などのタスクで有効性を検証する。
論文 参考訳(メタデータ) (2023-12-19T06:06:30Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
既存の微調整法は、事前訓練されたモデルの全てのパラメータ(フル微調整)をチューニングするか、最後の線形層(線形プローブ)のみをチューニングする。
そこで本研究では,SSFと呼ばれるパラメータ効率の高いファインタニング手法を提案する。
論文 参考訳(メタデータ) (2022-10-17T08:14:49Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
ICL (Few-shot in-context Learning) は、予測を行うたびにトレーニング例を全て処理するので、かなりの計算、メモリ、ストレージコストを発生させる。
パラメータ効率の良い微調整は、モデルの新たなタスクの実行を可能にするために、小さなパラメータセットをトレーニングする、代替パラダイムを提供する。
本稿では,少数ショットICLとパラメータ効率の微調整を厳密に比較し,後者が計算コストを劇的に削減できることを示す。
論文 参考訳(メタデータ) (2022-05-11T17:10:41Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。