論文の概要: Navigation Instruction Generation with BEV Perception and Large Language Models
- arxiv url: http://arxiv.org/abs/2407.15087v1
- Date: Sun, 21 Jul 2024 08:05:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:18:45.730326
- Title: Navigation Instruction Generation with BEV Perception and Large Language Models
- Title(参考訳): BEV知覚と大規模言語モデルを用いたナビゲーション命令生成
- Authors: Sheng Fan, Rui Liu, Wenguan Wang, Yi Yang,
- Abstract要約: 本稿では,Bird's Eye View(BEV)機能をMLLM(Multi-Modal Large Language Models)に組み込んだBEVインストラクタを提案する。
具体的には、BEVインストラクタは、BEVとパースペクティブ特徴を融合させることにより、3D環境の理解のためのパースペクティブBEVを構築する。
パースペクティブ-BEVプロンプトに基づいて、BEVインストラクタはさらにインスタンス誘導反復精製パイプラインを採用し、プログレッシブな方法で命令を改善する。
- 参考スコア(独自算出の注目度): 60.455964599187205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Navigation instruction generation, which requires embodied agents to describe the navigation routes, has been of great interest in robotics and human-computer interaction. Existing studies directly map the sequence of 2D perspective observations to route descriptions. Though straightforward, they overlook the geometric information and object semantics of the 3D environment. To address these challenges, we propose BEVInstructor, which incorporates Bird's Eye View (BEV) features into Multi-Modal Large Language Models (MLLMs) for instruction generation. Specifically, BEVInstructor constructs a PerspectiveBEVVisual Encoder for the comprehension of 3D environments through fusing BEV and perspective features. To leverage the powerful language capabilities of MLLMs, the fused representations are used as visual prompts for MLLMs, and perspective-BEV prompt tuning is proposed for parameter-efficient updating. Based on the perspective-BEV prompts, BEVInstructor further adopts an instance-guided iterative refinement pipeline, which improves the instructions in a progressive manner. BEVInstructor achieves impressive performance across diverse datasets (i.e., R2R, REVERIE, and UrbanWalk).
- Abstract(参考訳): ナビゲーションの経路を記述するために具体的エージェントを必要とするナビゲーション命令生成は、ロボット工学と人間とコンピュータの相互作用に大きな関心を寄せている。
既存の研究では、2次元視線観測のシーケンスを直接ルート記述にマッピングしている。
単純ではあるが、彼らは幾何学的な情報や3D環境のオブジェクトのセマンティクスを見落としている。
これらの課題に対処するために,バードアイビュー(BEV)機能をMLLM(Multi-Modal Large Language Models)に組み込んだBEVインストラクタを提案する。
具体的には、BEVインストラクタは、3D環境の理解のために、BEVとパースペクティブ特徴を融合して、パースペクティブBEVVisualエンコーダを構築する。
MLLMの強力な言語機能を活用するために、融合表現をMLLMの視覚的プロンプトとして使用し、パラメータ効率の更新のためにパースペクティブ-BEVプロンプトチューニングを提案する。
パースペクティブ-BEVプロンプトに基づいて、BEVインストラクタはさらにインスタンス誘導反復精製パイプラインを採用し、プログレッシブな方法で命令を改善する。
BEVInstructorは、さまざまなデータセット(R2R、REVERIE、UrbanWalkなど)にわたって素晴らしいパフォーマンスを達成する。
関連論文リスト
- MaskBEV: Towards A Unified Framework for BEV Detection and Map Segmentation [14.67253585778639]
MaskBEVは、マスキングによるマルチタスク学習パラダイムである。
3Dオブジェクトの検出と鳥の目視(BEV)マップのセグメンテーションを統一する。
3Dオブジェクト検出の1.3 NDS改善とBEVマップセグメンテーションの2.7 mIoU改善を実現している。
論文 参考訳(メタデータ) (2024-08-17T07:11:38Z) - Volumetric Environment Representation for Vision-Language Navigation [66.04379819772764]
視覚言語ナビゲーション(VLN)は、視覚的な観察と自然言語の指示に基づいて、エージェントが3D環境をナビゲートする必要がある。
本研究では,物理世界を3次元構造細胞にボクセル化するボリューム環境表現(VER)を提案する。
VERは3D占有率、3D部屋レイアウト、および3Dバウンディングボックスを共同で予測する。
論文 参考訳(メタデータ) (2024-03-21T06:14:46Z) - Bird's-Eye-View Scene Graph for Vision-Language Navigation [85.72725920024578]
視覚言語ナビゲーション(VLN)は、人間の指示に従って3D環境をナビゲートするエージェントである。
室内環境のシーンレイアウトと幾何学的手がかりを符号化するために,多段階のBEV表現を利用するBEVシーングラフ(BSG)を提案する。
BSGに基づいて、エージェントは、ローカルなBEVグリッドレベル決定スコアとグローバルなグラフレベル決定スコアを予測し、パノラマビューのサブビュー選択スコアと組み合わせる。
論文 参考訳(メタデータ) (2023-08-09T07:48:20Z) - VELMA: Verbalization Embodiment of LLM Agents for Vision and Language
Navigation in Street View [81.58612867186633]
視覚と言語ナビゲーション(VLN)は、視覚的および自然言語の理解と空間的および時間的推論能力を必要とする。
VELMAは,2つのコンテキスト内例のみを用いて,ストリートビューでのナビゲーション指示に従うことができることを示す。
数千の例でLLMエージェントをさらに微調整し、従来の2つのデータセットのタスク完了に対する25%-30%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2023-07-12T11:08:24Z) - OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection [29.530177591608297]
マルチビュー3Dオブジェクト検出は、高い有効性と低コストのため、自動運転において人気を博している。
現在の最先端検出器のほとんどは、クエリベースのバードアイビュー(BEV)パラダイムに従っている。
本稿では,移動対象の時間的・空間的手がかりをより効率的に彫ることができるOCBEVを提案する。
論文 参考訳(メタデータ) (2023-06-02T17:59:48Z) - GeoMIM: Towards Better 3D Knowledge Transfer via Masked Image Modeling
for Multi-view 3D Understanding [42.780417042750315]
マルチビューカメラによる3D検出は、コンピュータビジョンにおいて難しい問題である。
最近の研究は、事前訓練されたLiDAR検出モデルを利用して、知識をカメラベースの学生ネットワークに転送する。
我々は,LiDARモデルの知識を事前学習のパラダイムに伝達するための拡張幾何マスク画像モデリング(GeoMIM)を提案する。
論文 参考訳(メタデータ) (2023-03-20T17:59:03Z) - Delving into the Devils of Bird's-eye-view Perception: A Review,
Evaluation and Recipe [115.31507979199564]
鳥眼視(BEV)における知覚タスクの強力な表現の学習は、産業と学界の両方から注目されつつある。
センサーの構成が複雑化するにつれて、異なるセンサーからの複数のソース情報の統合と、統一されたビューにおける特徴の表現が重要になる。
BEV知覚の中核的な問題は、(a)視点からBEVへの視点変換を通して失われた3D情報を再構成する方法、(b)BEVグリッドにおける基底真理アノテーションの取得方法、(d)センサー構成が異なるシナリオでアルゴリズムを適応・一般化する方法にある。
論文 参考訳(メタデータ) (2022-09-12T15:29:13Z) - BEVerse: Unified Perception and Prediction in Birds-Eye-View for
Vision-Centric Autonomous Driving [92.05963633802979]
マルチカメラシステムに基づく3次元認識と予測のための統合フレームワークであるBEVerseを提案する。
マルチタスクBEVerseは3次元オブジェクト検出,セマンティックマップ構築,動き予測において単一タスク法より優れていることを示す。
論文 参考訳(メタデータ) (2022-05-19T17:55:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。