論文の概要: Deep multimodal saliency parcellation of cerebellar pathways: linking microstructure and individual function through explainable multitask learning
- arxiv url: http://arxiv.org/abs/2407.15132v1
- Date: Sun, 21 Jul 2024 12:05:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 19:08:59.419996
- Title: Deep multimodal saliency parcellation of cerebellar pathways: linking microstructure and individual function through explainable multitask learning
- Title(参考訳): 小脳経路の深部多様性解析 : 説明可能なマルチタスク学習による微細構造と個々の機能のリンク
- Authors: Ari Tchetchenian, Leo Zekelman, Yuqian Chen, Jarrett Rushmore, Fan Zhang, Edward H. Yeterian, Nikos Makris, Yogesh Rathi, Erik Meijering, Yang Song, Lauren J. O'Donnell,
- Abstract要約: ヒト小脳経路のパーセレーションは、人間の脳の理解を促進するために不可欠である。
本稿では,小脳経路解析のためのマルチモーダルデータ駆動方式を提案する。
- 参考スコア(独自算出の注目度): 10.929109355708926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Parcellation of human cerebellar pathways is essential for advancing our understanding of the human brain. Existing diffusion MRI tractography parcellation methods have been successful in defining major cerebellar fibre tracts, while relying solely on fibre tract structure. However, each fibre tract may relay information related to multiple cognitive and motor functions of the cerebellum. Hence, it may be beneficial for parcellation to consider the potential importance of the fibre tracts for individual motor and cognitive functional performance measures. In this work, we propose a multimodal data-driven method for cerebellar pathway parcellation, which incorporates both measures of microstructure and connectivity, and measures of individual functional performance. Our method involves first training a multitask deep network to predict various cognitive and motor measures from a set of fibre tract structural features. The importance of each structural feature for predicting each functional measure is then computed, resulting in a set of structure-function saliency values that are clustered to parcellate cerebellar pathways. We refer to our method as Deep Multimodal Saliency Parcellation (DeepMSP), as it computes the saliency of structural measures for predicting cognitive and motor functional performance, with these saliencies being applied to the task of parcellation. Applying DeepMSP we found that it was feasible to identify multiple cerebellar pathway parcels with unique structure-function saliency patterns that were stable across training folds.
- Abstract(参考訳): ヒト小脳経路のパーセレーションは、人間の脳の理解を促進するために不可欠である。
既存の拡散MRI画像解析法は, 線維構造のみに依存しつつ, 主要な小脳線維構造を定義することに成功している。
しかし、各線維路は、小脳の複数の認知機能や運動機能に関連する情報を中継することができる。
したがって、パーセレーションは、個々の運動と認知機能的パフォーマンス測定において、ファイバートラクトが潜在的に重要であることを考慮することが有益である。
本研究では,マイクロ構造と接続性の両方の尺度と,個々の機能性能の尺度を組み込んだ,小脳経路解析のためのマルチモーダルデータ駆動方式を提案する。
提案手法では,まずマルチタスク深層ネットワークをトレーニングし,繊維の構造的特徴から様々な認知的・運動的指標を予測する。
次に、各関数測度を予測するための各構造特徴の重要性を計算し、その結果、小脳経路を解析するためにクラスタ化された一連の構造関数のサリエンシ値が生成される。
本手法をDeep Multimodal Saliency Parcellation(ディープ・マルチモーダル・サリエンシ・パーセラレーション,DeepMSP)と呼ぶ。
DeepMSPを応用したところ、トレーニングフォールド間で安定なユニークな構造機能を持つ複数の小脳経路パリセルの同定が可能であることが判明した。
関連論文リスト
- GSSF: Generalized Structural Sparse Function for Deep Cross-modal Metric Learning [51.677086019209554]
ペアワイド類似性学習のためのモダリティ間の強力な関係を捕捉する汎用構造スパースを提案する。
距離メートル法は、対角線とブロック対角線の2つの形式を微妙にカプセル化する。
クロスモーダルと2つの余分なユニモーダル検索タスクの実験は、その優位性と柔軟性を検証した。
論文 参考訳(メタデータ) (2024-10-20T03:45:50Z) - One-step Structure Prediction and Screening for Protein-Ligand Complexes using Multi-Task Geometric Deep Learning [6.605588716386855]
マルチタスク幾何学的深層学習に基づいて,LigPoseを1つのモデル,すなわちLigPoseに正確に取り組めることを示す。
LigPoseはリガンドとタンパク質のペアをグラフとして表現し、結合強度と原子間相互作用を補助的なタスクとして学習する。
実験によると、LigPoseは薬物研究の主要な課題について最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-08-21T05:53:50Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Quasi-orthogonality and intrinsic dimensions as measures of learning and
generalisation [55.80128181112308]
ニューラルネットワークの特徴空間の次元性と準直交性は、ネットワークの性能差別と共同して機能する可能性があることを示す。
本研究は, ネットワークの最終的な性能と, ランダムに初期化された特徴空間の特性との関係を示唆する。
論文 参考訳(メタデータ) (2022-03-30T21:47:32Z) - Functional connectivity ensemble method to enhance BCI performance
(FUCONE) [3.510884437562011]
本稿では,機能的接続推定器と共分散に基づくパイプラインを組み合わせて精神状態の分類を行う新しいフレームワークを提案する。
機能接続推定器の徹底的な評価を行い、FUCONEと呼ばれる最高の実行パイプラインを異なる条件で評価する。
論文 参考訳(メタデータ) (2021-11-04T19:40:08Z) - Learning Interpretable Models for Coupled Networks Under Domain
Constraints [8.308385006727702]
脳ネットワークの構造的エッジと機能的エッジの相互作用に着目して,結合ネットワークの概念を検討する。
相互作用を推定しながらノイズ項にハードネットワークの制約を課す新しい定式化を提案する。
ヒトコネクトームプロジェクトから得られたマルチシェル拡散およびタスク誘発fMRIデータセットの手法を検証する。
論文 参考訳(メタデータ) (2021-04-19T06:23:31Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
固定サイズのパラメータ化表現を導入し、与えられた入力セットから、そのセットとトレーニング可能な参照の間の最適な輸送計画に従って要素を埋め込み、集約する。
我々のアプローチは大規模なデータセットにスケールし、参照のエンドツーエンドのトレーニングを可能にすると同時に、計算コストの少ない単純な教師なし学習メカニズムも提供する。
論文 参考訳(メタデータ) (2020-06-22T08:35:58Z) - Mapping individual differences in cortical architecture using multi-view
representation learning [0.0]
本稿では,タスクfMRIと安静状態fMRIで計測されたアクティベーションと接続性に基づく情報を組み合わせて,新しい機械学習手法を提案する。
マルチビューディープ・オートエンコーダは、2つのfMRIモダリティを、患者を特徴づけるスカラースコアを推測するために予測モデルが訓練されたジョイント表現空間に融合させるように設計されている。
論文 参考訳(メタデータ) (2020-04-01T09:01:25Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。