論文の概要: MIBench: Evaluating Multimodal Large Language Models over Multiple Images
- arxiv url: http://arxiv.org/abs/2407.15272v2
- Date: Tue, 8 Oct 2024 07:18:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:56:37.646666
- Title: MIBench: Evaluating Multimodal Large Language Models over Multiple Images
- Title(参考訳): MIBench: 複数の画像上でのマルチモーダル大言語モデルの評価
- Authors: Haowei Liu, Xi Zhang, Haiyang Xu, Yaya Shi, Chaoya Jiang, Ming Yan, Ji Zhang, Fei Huang, Chunfeng Yuan, Bing Li, Weiming Hu,
- Abstract要約: マルチイメージシナリオにおけるMLLMの微粒化能力を包括的に評価する新しいベンチマークMIBenchを提案する。
具体的には、MIBenchはマルチモーダル・インコンテクスト・ラーニング(MIC)とマルチモーダル・インコンテクスト・ラーニング(MIC)の3つのシナリオに分類する。
その結果、現在のモデルでは単一画像のタスクが優れているが、複数画像の入力に直面すると大きな欠点が現れることがわかった。
- 参考スコア(独自算出の注目度): 70.44423964171088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Built on the power of LLMs, numerous multimodal large language models (MLLMs) have recently achieved remarkable performance on various vision-language tasks. However, most existing MLLMs and benchmarks primarily focus on single-image input scenarios, leaving the performance of MLLMs when handling realistic multiple images underexplored. Although a few benchmarks consider multiple images, their evaluation dimensions and samples are very limited. In this paper, we propose a new benchmark MIBench, to comprehensively evaluate fine-grained abilities of MLLMs in multi-image scenarios. Specifically, MIBench categorizes the multi-image abilities into three scenarios: multi-image instruction (MII), multimodal knowledge-seeking (MKS) and multimodal in-context learning (MIC), and constructs 13 tasks with a total of 13K annotated samples. During data construction, for MII and MKS, we extract correct options from manual annotations and create challenging distractors to obtain multiple-choice questions. For MIC, to enable an in-depth evaluation, we set four sub-tasks and transform the original datasets into in-context learning formats. We evaluate several open-source and closed-source MLLMs on the proposed MIBench. The results reveal that although current models excel in single-image tasks, they exhibit significant shortcomings when faced with multi-image inputs, such as limited fine-grained perception, multi-image reasoning and in-context learning abilities. The annotated data of MIBench is available at https://huggingface.co/datasets/StarBottle/MIBench.
- Abstract(参考訳): LLMの力に基づいて構築された多数のマルチモーダル大規模言語モデル(MLLM)は、近年、様々な視覚言語タスクにおいて顕著なパフォーマンスを達成している。
しかし、既存のMLLMやベンチマークのほとんどはシングルイメージの入力シナリオに重点を置いており、現実的な複数の画像を扱う際にMLLMのパフォーマンスが過小評価されている。
いくつかのベンチマークでは複数の画像を考慮しているが、評価の寸法やサンプルは非常に限られている。
本稿では,マルチイメージシナリオにおけるMLLMの微粒化能力を包括的に評価するベンチマークMIBenchを提案する。
具体的には、MII(Multi-image instruction)、MKS(Multi-modal Knowledge-seeking)、MIC(Multi-modal in-context Learning)の3つのシナリオに分類し、合計で13のタスクを13のアノテーション付きサンプルで構成する。
データ構築中、MII と MKS は、手動のアノテーションから正しいオプションを抽出し、難解なインタプリタを作成し、複数の選択質問を得る。
MICでは、4つのサブタスクを設定し、元のデータセットをテキスト内学習形式に変換する。
提案するMIBench上で,複数のオープンソースおよびクローズドソースMLLMを評価した。
その結果、現在のモデルは単一画像タスクでは優れているが、細粒度知覚やマルチ画像推論、コンテキスト内学習能力など、複数画像入力に直面する場合の重大な欠点が明らかとなった。
MIBenchの注釈付きデータはhttps://huggingface.co/datasets/StarBottle/MIBenchで確認できる。
関連論文リスト
- Order Matters: Exploring Order Sensitivity in Multimodal Large Language Models [15.622219099903067]
マルチモーダル入力の順序を変えることで、モデルの性能が高度な性能とランダムな推測の間で変動することを発見した。
この現象は、単一のモダリティ(テキストのみまたは画像のみ)と混合モダリティ(画像-テキスト-ペア)の両方の文脈に存在する。
MLLM評価における順序バイアスに対処する新しい指標である位置不変精度(PIA)を提案する。
論文 参考訳(メタデータ) (2024-10-22T13:05:11Z) - MC-Bench: A Benchmark for Multi-Context Visual Grounding in the Era of MLLMs [61.56904387052982]
本稿では,マルチコンテキストの視覚的グラウンド化という新しい視覚的グラウンド化タスクを提案する。
オープンなテキストプロンプトに基づいて、複数の画像にまたがる関心のインスタンスをローカライズすることを目的としている。
我々は20以上の最先端MLLMと基盤モデルをベンチマークし、潜在的にマルチコンテキストの視覚的グラウンド化機能を有する。
論文 参考訳(メタデータ) (2024-10-16T07:52:57Z) - LLaVA-NeXT-Interleave: Tackling Multi-image, Video, and 3D in Large Multimodal Models [70.2997884478129]
LMMにおけるマルチイメージ、マルチフレーム(ビデオ)、マルチビュー(3D)、マルチパッチ(シングルイメージ)シナリオを同時に扱うLLaVA-NeXT-Interleaveを紹介する。
また,LMMのマルチイメージ性能を総合的に評価するために,LLaVA-Interleave Benchをキュレートする。
論文 参考訳(メタデータ) (2024-07-10T17:59:43Z) - Multimodal Needle in a Haystack: Benchmarking Long-Context Capability of Multimodal Large Language Models [10.41857522464292]
本稿では,MultiModal Needle-in-a-haystack(MMNeedle)ベンチマークを導入する。
画像ステッチを用いて、入力コンテキスト長をさらに増加させ、サブイメージレベルの検索のためのラベルを自動的に生成するプロトコルを開発する。
我々は、APIベースモデルとオープンソースモデルの両方を含む最先端のMLLMを評価した。
論文 参考訳(メタデータ) (2024-06-17T05:54:06Z) - MuirBench: A Comprehensive Benchmark for Robust Multi-image Understanding [150.28164854480912]
マルチモーダルLLMの堅牢なマルチイメージ理解機能に着目したベンチマークであるMuirBenchを紹介する。
MuirBenchは、12の多様なマルチイメージタスク(例えば、シーン理解、順序付け)で構成されており、10のカテゴリのマルチイメージ関係を含んでいる。
GPT-4oやGemini Proのような最高のパフォーマンスモデルでさえ、ムアベンチを解くことは困難であり、精度は68.0%、49.3%である。
論文 参考訳(メタデータ) (2024-06-13T17:59:52Z) - MileBench: Benchmarking MLLMs in Long Context [31.211260223575092]
MLLMのMultImodal Long-contExt機能をテストするためのベンチマークであるMileBenchを紹介する。
MLLMの長文適応能力と長文シナリオにおけるタスク完了能力を体系的に評価する。
その結果、オープンソースGPT-4oは他よりも優れているが、ほとんどのオープンソースMLLMは長期的文脈で苦労していることがわかった。
論文 参考訳(メタデータ) (2024-04-29T09:19:05Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - MME: A Comprehensive Evaluation Benchmark for Multimodal Large Language Models [73.86954509967416]
マルチモーダル言語モデル(MLLM)は、マルチモーダルタスクを実行するために強力なLLMに依存している。
本稿では,MLLM 評価ベンチマーク MME について述べる。
知覚能力と認知能力の両方を合計14のサブタスクで測定する。
論文 参考訳(メタデータ) (2023-06-23T09:22:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。