FMDNN: A Fuzzy-guided Multi-granular Deep Neural Network for Histopathological Image Classification
- URL: http://arxiv.org/abs/2407.15312v1
- Date: Mon, 22 Jul 2024 00:46:15 GMT
- Title: FMDNN: A Fuzzy-guided Multi-granular Deep Neural Network for Histopathological Image Classification
- Authors: Weiping Ding, Tianyi Zhou, Jiashuang Huang, Shu Jiang, Tao Hou, Chin-Teng Lin,
- Abstract summary: We propose the Fuzzy-guided Multi-granularity Deep Neural Network (FMDNN)
Inspired by the multi-granular diagnostic approach of pathologists, we perform feature extraction on cell structures at coarse, medium, and fine granularity.
A fuzzy-guided cross-attention module guides universal fuzzy features toward multi-granular features.
- Score: 40.94024666952439
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Histopathological image classification constitutes a pivotal task in computer-aided diagnostics. The precise identification and categorization of histopathological images are of paramount significance for early disease detection and treatment. In the diagnostic process of pathologists, a multi-tiered approach is typically employed to assess abnormalities in cell regions at different magnifications. However, feature extraction is often performed at a single granularity, overlooking the multi-granular characteristics of cells. To address this issue, we propose the Fuzzy-guided Multi-granularity Deep Neural Network (FMDNN). Inspired by the multi-granular diagnostic approach of pathologists, we perform feature extraction on cell structures at coarse, medium, and fine granularity, enabling the model to fully harness the information in histopathological images. We incorporate the theory of fuzzy logic to address the challenge of redundant key information arising during multi-granular feature extraction. Cell features are described from different perspectives using multiple fuzzy membership functions, which are fused to create universal fuzzy features. A fuzzy-guided cross-attention module guides universal fuzzy features toward multi-granular features. We propagate these features through an encoder to all patch tokens, aiming to achieve enhanced classification accuracy and robustness. In experiments on multiple public datasets, our model exhibits a significant improvement in accuracy over commonly used classification methods for histopathological image classification and shows commendable interpretability.
Related papers
- DiffKillR: Killing and Recreating Diffeomorphisms for Cell Annotation in Dense Microscopy Images [105.46086313858062]
We introduce DiffKillR, a novel framework that reframes cell annotation as the combination of archetype matching and image registration tasks.
We will discuss the theoretical properties of DiffKillR and validate it on three microscopy tasks, demonstrating its advantages over existing supervised, semi-supervised, and unsupervised methods.
arXiv Detail & Related papers (2024-10-04T00:38:29Z) - HistoGym: A Reinforcement Learning Environment for Histopathological Image Analysis [9.615399811006034]
HistoGym aims to foster whole slide image diagnosis by mimicking the real-life processes of doctors.
We offer various scenarios for different organs and cancers, including both WSI-based and selected region-based scenarios.
arXiv Detail & Related papers (2024-08-16T17:19:07Z) - MultiFusionNet: Multilayer Multimodal Fusion of Deep Neural Networks for
Chest X-Ray Image Classification [16.479941416339265]
Automated systems utilizing convolutional neural networks (CNNs) have shown promise in improving the accuracy and efficiency of chest X-ray image classification.
We propose a novel deep learning-based multilayer multimodal fusion model that emphasizes extracting features from different layers and fusing them.
The proposed model achieves a significantly higher accuracy of 97.21% and 99.60% for both three-class and two-class classifications, respectively.
arXiv Detail & Related papers (2024-01-01T11:50:01Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - MultiPathGAN: Structure Preserving Stain Normalization using
Unsupervised Multi-domain Adversarial Network with Perception Loss [10.043946236248392]
Histopathology relies on the analysis of microscopic tissue images to diagnose disease.
We introduce an unsupervised adversarial network to translate (and hence normalize) whole slide images across multiple data acquisition domains.
arXiv Detail & Related papers (2022-04-20T20:48:17Z) - Self-Supervised Vision Transformers Learn Visual Concepts in
Histopathology [5.164102666113966]
We conduct a search for good representations in pathology by training a variety of self-supervised models with validation on a variety of weakly-supervised and patch-level tasks.
Our key finding is in discovering that Vision Transformers using DINO-based knowledge distillation are able to learn data-efficient and interpretable features in histology images.
arXiv Detail & Related papers (2022-03-01T16:14:41Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Microscopic fine-grained instance classification through deep attention [7.50282814989294]
Fine-grained classification of microscopic image data with limited samples is an open problem in computer vision and biomedical imaging.
We propose a simple yet effective deep network that performs two tasks simultaneously in an end-to-end manner.
The result is a robust but lightweight end-to-end trainable deep network that yields state-of-the-art results.
arXiv Detail & Related papers (2020-10-06T15:29:58Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.