論文の概要: Efficient Multi-disparity Transformer for Light Field Image Super-resolution
- arxiv url: http://arxiv.org/abs/2407.15329v1
- Date: Mon, 22 Jul 2024 02:23:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:30:24.173690
- Title: Efficient Multi-disparity Transformer for Light Field Image Super-resolution
- Title(参考訳): 光電界画像超解像のための高効率多変圧器
- Authors: Zeke Zexi Hu, Haodong Chen, Yuk Ying Chung, Xiaoming Chen,
- Abstract要約: 本稿では,光フィールド画像超解像(LFSR)に適した新しい変圧器であるMulti-scale Disparity Transformer(MDT)を提案する。
MDTは、サブアパーチャ画像の不特定処理による計算冗長性と不均一な絡み合いの問題に対処する。
このアーキテクチャに基づいて,効率的なLFSRネットワークLF-MDTNetを提案する。
- 参考スコア(独自算出の注目度): 6.814658355110824
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper presents the Multi-scale Disparity Transformer (MDT), a novel Transformer tailored for light field image super-resolution (LFSR) that addresses the issues of computational redundancy and disparity entanglement caused by the indiscriminate processing of sub-aperture images inherent in conventional methods. MDT features a multi-branch structure, with each branch utilising independent disparity self-attention (DSA) to target specific disparity ranges, effectively reducing computational complexity and disentangling disparities. Building on this architecture, we present LF-MDTNet, an efficient LFSR network. Experimental results demonstrate that LF-MDTNet outperforms existing state-of-the-art methods by 0.37 dB and 0.41 dB PSNR at the 2x and 4x scales, achieving superior performance with fewer parameters and higher speed.
- Abstract(参考訳): 本稿では,光フィールド画像の超解像(LFSR)に適した新しい変換器であるMulti-scale Disparity Transformer(MDT)を提案する。
MDTは多分岐構造を特徴とし、各ブランチは個別の分散性自己注意(DSA)を利用して特定の格差範囲をターゲットにし、計算複雑性を効果的に減らし、不一致を解消する。
このアーキテクチャに基づいて,効率的なLFSRネットワークLF-MDTNetを提案する。
実験の結果,LF-MDTNetは2xスケールと4xスケールで0.37dB,0.41dBPSNRの既存手法よりも優れ,パラメータが少なく,高速で優れた性能を実現していることがわかった。
関連論文リスト
- Dual-Domain Deep D-bar Method for Solving Electrical Impedance Tomography [5.112764609048122]
正則化Dバー法は電気インピーダンストモグラフィー(EIT)問題を解く最も顕著な方法の1つである。
Dバー画像は、しばしば正確な高周波情報がないため、コントラストが低く、解像度が低い。
低コントラストDバー画像から高コントラストDバー画像列を検索するためのデュアルドメインニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-05-12T21:55:02Z) - Transforming Image Super-Resolution: A ConvFormer-based Efficient
Approach [63.98380888730723]
本稿では, Convolutional Transformer Layer (ConvFormer) と ConvFormer-based Super-Resolution Network (CFSR) を紹介する。
CFSRは、計算コストの少ない長距離依存と広範囲の受容場を効率的にモデル化する。
これは、x2 SRタスクのUrban100データセットで0.39dB、パラメータが26%、FLOPが31%減少している。
論文 参考訳(メタデータ) (2024-01-11T03:08:00Z) - Efficient Multi-scale Network with Learnable Discrete Wavelet Transform for Blind Motion Deblurring [25.36888929483233]
そこで本研究では,シングルインプットとマルチアウトプット(SIMO)に基づくマルチスケールネットワークを提案する。
実世界の軌道特性を学習可能なウェーブレット変換モジュールと組み合わせて、ぼやけた画像から鋭い画像へのステップバイステップ遷移の方向連続性と周波数特性に着目した。
論文 参考訳(メタデータ) (2023-12-29T02:59:40Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
低画質の原画像のバーストから空間的精度の高い高画質画像を再構成する新しいGated Multi-Resolution Transfer Network (GMTNet)を提案する。
5つのデータセットに関する詳細な実験分析は、我々のアプローチを検証し、バースト超解像、バーストデノイング、低照度バーストエンハンスメントのための最先端技術を設定する。
論文 参考訳(メタデータ) (2023-04-13T17:54:00Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
実世界の画像超解像(RISR)は、未知の複雑な劣化下でのSR画像の品質向上に重点を置いている。
既存の手法は、分解レベルが異なる低解像度(LR)画像を強化するために重いSRモデルに依存している。
本稿では,DCS-RISRと呼ばれる高効率リアルタイム画像超解法のための動的チャネル分割方式を提案する。
論文 参考訳(メタデータ) (2022-12-15T04:34:57Z) - FCL-GAN: A Lightweight and Real-Time Baseline for Unsupervised Blind
Image Deblurring [72.43250555622254]
本稿では,周波数領域の競合損失制約型軽量サイクルGANと呼ばれる,軽量でリアルタイムな非教師付きBIDベースラインを提案する。
FCL-GANは、画像領域制限がなく、画像解像度制限がなく、SOTAより25倍軽く、SOTAより5倍高速である。
いくつかの画像データセットの実験では、性能、モデルサイズ、参照時間の観点からFCL-GANの有効性が示されている。
論文 参考訳(メタデータ) (2022-04-16T15:08:03Z) - Efficient and Degradation-Adaptive Network for Real-World Image
Super-Resolution [28.00231586840797]
実世界の画像超解像(Real-ISR)は、実世界の画像の未知の複雑な劣化のために難しい課題である。
近年のReal-ISRの研究は、画像劣化空間をモデル化することによって大きな進歩を遂げている。
本稿では,各入力画像の劣化を推定してパラメータを適応的に指定する,効率的な劣化適応型超解像ネットワークを提案する。
論文 参考訳(メタデータ) (2022-03-27T05:59:13Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
近年の視覚変換器と自己注意は,様々なコンピュータビジョンタスクにおいて有望な成果を上げている。
我々は,CNNの局所的特徴とトランスフォーマーが捉えた長距離依存性を活用する,超解像(SR)タスクのための効果的なハイブリッドアーキテクチャを提案する。
提案手法は,多数のベンチマークデータセットから最先端のSR結果を得る。
論文 参考訳(メタデータ) (2022-03-15T06:52:25Z) - Global Vision Transformer Pruning with Hessian-Aware Saliency [93.33895899995224]
この研究はヴィジュアルトランスフォーマー(ViT)モデルの共通設計哲学に挑戦する。
遅延を意識した規則化による直接遅延低減を実現し,すべての層や構造に匹敵する新しいヘッセン型構造解析基準を導出する。
DeiT-Baseモデルで反復的なプルーニングを実行すると、NViT(Novel ViT)と呼ばれる新しいアーキテクチャファミリが生まれ、パラメータをより効率的に利用する新しいパラメータが現れる。
論文 参考訳(メタデータ) (2021-10-10T18:04:59Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
イメージスーパーレゾリューション(sr)は、低解像度光センサの画質を向上させる有望な技術である。
本稿では,安価なチャネル(可視・深度)からの補完情報を活用して,少ないパラメータを用いて高価なチャネル(熱)の画像品質を向上させる。
論文 参考訳(メタデータ) (2020-12-07T02:15:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。