論文の概要: Explore the LiDAR-Camera Dynamic Adjustment Fusion for 3D Object Detection
- arxiv url: http://arxiv.org/abs/2407.15334v1
- Date: Mon, 22 Jul 2024 02:42:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:20:28.016872
- Title: Explore the LiDAR-Camera Dynamic Adjustment Fusion for 3D Object Detection
- Title(参考訳): 3次元物体検出のためのLiDAR-Camera Dynamic Adjustment Fusionの探索
- Authors: Yiran Yang, Xu Gao, Tong Wang, Xin Hao, Yifeng Shi, Xiao Tan, Xiaoqing Ye, Jingdong Wang,
- Abstract要約: カメラとLiDARは、正確で堅牢な自動運転システムの情報センサーとして機能する。
これらのセンサーは、しばしば異質な性質を示し、分布のモダリティギャップをもたらす。
モーダル分布の整合と効果的なモーダル表現の学習を目的とした動的調整技術を導入する。
- 参考スコア(独自算出の注目度): 38.809645060899065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camera and LiDAR serve as informative sensors for accurate and robust autonomous driving systems. However, these sensors often exhibit heterogeneous natures, resulting in distributional modality gaps that present significant challenges for fusion. To address this, a robust fusion technique is crucial, particularly for enhancing 3D object detection. In this paper, we introduce a dynamic adjustment technology aimed at aligning modal distributions and learning effective modality representations to enhance the fusion process. Specifically, we propose a triphase domain aligning module. This module adjusts the feature distributions from both the camera and LiDAR, bringing them closer to the ground truth domain and minimizing differences. Additionally, we explore improved representation acquisition methods for dynamic fusion, which includes modal interaction and specialty enhancement. Finally, an adaptive learning technique that merges the semantics and geometry information for dynamical instance optimization. Extensive experiments in the nuScenes dataset present competitive performance with state-of-the-art approaches. Our code will be released in the future.
- Abstract(参考訳): カメラとLiDARは、正確で堅牢な自動運転システムの情報センサーとして機能する。
しかし、これらのセンサーは、しばしば異質な性質を示し、結果として分布のモダリティギャップが生じ、融合に重大な課題が生じる。
そのためには、特に3Dオブジェクト検出の強化のために、堅牢な融合技術が不可欠である。
本稿では,モーダル分布の整合化と,融合プロセスの強化を目的とした効果的なモーダル表現の学習を目的とした動的調整技術を提案する。
具体的には,三相整列モジュールを提案する。
このモジュールは、カメラとLiDARの両方の機能分布を調整し、それらを地上の真理領域に近づけ、違いを最小限にする。
さらに,モーダル相互作用と特殊性向上を含む動的融合の表現獲得手法の改善について検討する。
最後に、動的インスタンス最適化のためにセマンティクスと幾何学情報をマージする適応学習手法を提案する。
nuScenesデータセットの大規模な実験は、最先端のアプローチと競合する性能を示す。
私たちのコードは将来リリースされるでしょう。
関連論文リスト
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection [28.319440934322728]
MV2DFusionは、高度なクエリベースの融合機構を通じて両方の世界の強みを統合するマルチモーダル検出フレームワークである。
私たちのフレームワークの柔軟性は、任意のイメージとポイントクラウドベースの検出器との統合を可能にし、その適応性と将来の進歩の可能性を示しています。
論文 参考訳(メタデータ) (2024-08-12T06:46:05Z) - vFusedSeg3D: 3rd Place Solution for 2024 Waymo Open Dataset Challenge in Semantic Segmentation [0.0]
VFusedSeg3Dは、カメラ画像のリッチなセマンティックコンテンツと、LiDARの正確な深度センシングを使用して、強力で包括的な環境理解を生成する。
我々の新しい特徴融合技術は、LiDAR点雲の幾何学的特徴とカメラ画像の意味的特徴を組み合わせたものである。
マルチモダリティ技術を用いることで、性能が大幅に向上し、検証セットで72.46%の最先端のmIoUが得られる。
論文 参考訳(メタデータ) (2024-08-09T11:34:19Z) - 4D Contrastive Superflows are Dense 3D Representation Learners [62.433137130087445]
我々は,LiDARとカメラのペアを連続的に利用して事前学習の目的を確立するための,新しいフレームワークであるSuperFlowを紹介する。
学習効率をさらに向上するため,カメラビューから抽出した知識の整合性を高めるプラグイン・アンド・プレイ・ビュー・一貫性モジュールを組み込んだ。
論文 参考訳(メタデータ) (2024-07-08T17:59:54Z) - Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System [0.0]
本稿では,自律走行車認識システムにおける3次元物体検出のためのカメラとレーダーセンサの融合問題に対する新しいアプローチを提案する。
我々のアプローチは、ディープラーニングの最近の進歩に基づいており、両方のセンサーの強度を活用して物体検出性能を向上させる。
提案手法は単一センサ・ソリューションよりも優れた性能を実現し,他のトップレベルの融合手法と直接競合できることを示す。
論文 参考訳(メタデータ) (2024-04-25T12:04:31Z) - AlignMiF: Geometry-Aligned Multimodal Implicit Field for LiDAR-Camera
Joint Synthesis [98.3959800235485]
近年,複数のモダリティを単一のフィールド内で探索する手法がいくつか存在しており,異なるモダリティから暗黙的な特徴を共有して再現性能を向上させることを目的としている。
本研究では,LiDAR-カメラ共同合成の多モード暗黙的場に関する包括的解析を行い,その根底にある問題はセンサの誤配にあることを示した。
幾何学的に整合した多モード暗黙の場であるAlignMiFを導入し,2つのモジュール,Geometry-Aware Alignment (GAA) とShared Geometry Initialization (SGI)を提案する。
論文 参考訳(メタデータ) (2024-02-27T13:08:47Z) - ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3Dマルチオブジェクトトラッキング(MOT)は、自律移動エージェントが安全にシーンをナビゲートするために不可欠である。
我々は,カメラとLiDARセンサ情報を融合した3DMOTフレームワークの開発を目指している。
論文 参考訳(メタデータ) (2023-10-04T02:17:59Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
MLF-DETと呼ばれる,高性能なクロスモーダル3DオブジェクトDrectionのための,新規かつ効果的なマルチレベルフュージョンネットワークを提案する。
特徴レベルの融合では、マルチスケールのボクセル特徴と画像の特徴を密集したマルチスケールのボクセル画像融合(MVI)モジュールを提示する。
本稿では,画像のセマンティクスを利用して検出候補の信頼度を補正するFCR(Feature-cued Confidence Rectification)モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-18T11:26:02Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - LIF-Seg: LiDAR and Camera Image Fusion for 3D LiDAR Semantic
Segmentation [78.74202673902303]
本稿では,LiDAR分割のための粗大なLiDARとカメラフュージョンベースネットワーク(LIF-Seg)を提案する。
提案手法は,画像の文脈情報を完全に活用し,単純だが効果的な早期融合戦略を導入する。
これら2つのコンポーネントの協力により、効果的なカメラ-LiDAR融合が成功する。
論文 参考訳(メタデータ) (2021-08-17T08:53:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。