論文の概要: Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System
- arxiv url: http://arxiv.org/abs/2404.16548v1
- Date: Thu, 25 Apr 2024 12:04:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-26 13:49:56.907690
- Title: Cross-Domain Spatial Matching for Camera and Radar Sensor Data Fusion in Autonomous Vehicle Perception System
- Title(参考訳): 自律型車両認識システムにおけるカメラとレーダーセンサデータ融合のためのクロスドメイン空間マッチング
- Authors: Daniel Dworak, Mateusz Komorkiewicz, Paweł Skruch, Jerzy Baranowski,
- Abstract要約: 本稿では,自律走行車認識システムにおける3次元物体検出のためのカメラとレーダーセンサの融合問題に対する新しいアプローチを提案する。
我々のアプローチは、ディープラーニングの最近の進歩に基づいており、両方のセンサーの強度を活用して物体検出性能を向上させる。
提案手法は単一センサ・ソリューションよりも優れた性能を実現し,他のトップレベルの融合手法と直接競合できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we propose a novel approach to address the problem of camera and radar sensor fusion for 3D object detection in autonomous vehicle perception systems. Our approach builds on recent advances in deep learning and leverages the strengths of both sensors to improve object detection performance. Precisely, we extract 2D features from camera images using a state-of-the-art deep learning architecture and then apply a novel Cross-Domain Spatial Matching (CDSM) transformation method to convert these features into 3D space. We then fuse them with extracted radar data using a complementary fusion strategy to produce a final 3D object representation. To demonstrate the effectiveness of our approach, we evaluate it on the NuScenes dataset. We compare our approach to both single-sensor performance and current state-of-the-art fusion methods. Our results show that the proposed approach achieves superior performance over single-sensor solutions and could directly compete with other top-level fusion methods.
- Abstract(参考訳): 本稿では,自律走行車認識システムにおける3次元物体検出のためのカメラとレーダーセンサの融合問題に対する新しいアプローチを提案する。
我々のアプローチは、ディープラーニングの最近の進歩に基づいており、両方のセンサーの強度を活用して物体検出性能を向上させる。
より正確には、最先端のディープラーニングアーキテクチャを用いてカメラ画像から2次元特徴を抽出し、その特徴を3次元空間に変換するために、新しいクロスドメイン空間マッチング(CDSM)変換手法を適用する。
そして、それらを補完的な融合戦略を用いて抽出したレーダーデータで融合し、最終的な3次元オブジェクト表現を生成する。
提案手法の有効性を示すため,NuScenesデータセット上で評価を行った。
我々は, 単一センサ性能と現状融合法との比較を行った。
提案手法は単一センサ・ソリューションよりも優れた性能を実現し,他のトップレベルの融合手法と直接競合できることを示す。
関連論文リスト
- Progressive Multi-Modal Fusion for Robust 3D Object Detection [12.048303829428452]
既存の方法は、バードアイビュー(BEV)とパースペクティブビュー(PV)の両方のモードから特徴を投影することで、単一ビューでセンサフュージョンを実行する。
本稿では,中間クエリレベルとオブジェクトクエリレベルの両方で,BEVとPVの両方の機能を組み合わせたプログレッシブフュージョンフレームワークProFusion3Dを提案する。
我々のアーキテクチャは、局所的およびグローバルな特徴を融合させ、3次元オブジェクト検出の堅牢性を高める。
論文 参考訳(メタデータ) (2024-10-09T22:57:47Z) - Joint object detection and re-identification for 3D obstacle
multi-camera systems [47.87501281561605]
本研究は,カメラとライダー情報を用いた物体検出ネットワークに新たな改良を加えたものである。
同じ車両内の隣のカメラにまたがって物体を再識別する作業のために、追加のブランチが組み込まれている。
その結果,従来の非最大抑圧(NMS)技術よりも,この手法が優れていることが示された。
論文 参考訳(メタデータ) (2023-10-09T15:16:35Z) - Multi-Modal 3D Object Detection by Box Matching [109.43430123791684]
マルチモーダル3次元検出のためのボックスマッチング(FBMNet)による新しいフュージョンネットワークを提案する。
3Dオブジェクトと2Dオブジェクトの提案を学習することで、ROI特徴を組み合わせることで、検出のための融合を効果的に行うことができる。
論文 参考訳(メタデータ) (2023-05-12T18:08:51Z) - DETR4D: Direct Multi-View 3D Object Detection with Sparse Attention [50.11672196146829]
サラウンドビュー画像を用いた3次元物体検出は、自動運転にとって必須の課題である。
マルチビュー画像における3次元オブジェクト検出のためのスパースアテンションと直接特徴クエリを探索するトランスフォーマーベースのフレームワークであるDETR4Dを提案する。
論文 参考訳(メタデータ) (2022-12-15T14:18:47Z) - CRAFT: Camera-Radar 3D Object Detection with Spatio-Contextual Fusion
Transformer [14.849645397321185]
カメラレーダーセンサーは、LiDARと比較してコスト、信頼性、メンテナンスにおいて大きな利点がある。
既存の融合法はしばしば、後期融合戦略(英語版)と呼ばれる結果レベルで単一のモダリティの出力を融合させる。
本稿では,3次元物体検出のためのカメラとレーダーの空間的特性と文脈的特性を効果的に活用する提案レベルの早期融合手法を提案する。
我々のカメラレーダ融合アプローチは、カメラ専用ベースラインよりも8.7および10.8ポイント高いnuScenesテストセット上で、41.1% mAPと52.3% NDSの最先端を実現し、また、カメラ上での競争性能を得る。
論文 参考訳(メタデータ) (2022-09-14T10:25:30Z) - Bridging the View Disparity of Radar and Camera Features for Multi-modal
Fusion 3D Object Detection [6.959556180268547]
本稿では3次元物体検出にミリ波レーダとカメラセンサ融合を用いる方法について述べる。
より優れた特徴表現のための鳥眼ビュー(BEV)における特徴レベル融合を実現する新しい手法を提案する。
論文 参考訳(メタデータ) (2022-08-25T13:21:37Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
自律運転における3D知覚のための2つの重要なセンサーは、カメラとLiDARである。
これら2つのモダリティを融合させることで、3次元知覚モデルの性能を大幅に向上させることができる。
我々は、最先端の核融合法を初めてベンチマークした。
論文 参考訳(メタデータ) (2022-05-30T09:35:37Z) - DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection [83.18142309597984]
ライダーとカメラは、自動運転における3D検出を補完する情報を提供する重要なセンサーである。
我々はDeepFusionという名前の汎用マルチモーダル3D検出モデル群を開発した。
論文 参考訳(メタデータ) (2022-03-15T18:46:06Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
本稿では,レーダとカメラセンサの融合に基づく共同物体検出と追跡のためのエンドツーエンドネットワークを提案する。
提案手法では,物体検出に中心型レーダカメラ融合アルゴリズムを用い,物体関連にグリーディアルゴリズムを用いる。
提案手法は,20.0AMOTAを達成し,ベンチマークにおける視覚ベースの3Dトラッキング手法よりも優れる,挑戦的なnuScenesデータセット上で評価する。
論文 参考訳(メタデータ) (2021-07-11T23:56:53Z) - Deep Continuous Fusion for Multi-Sensor 3D Object Detection [103.5060007382646]
本稿では,LIDARとカメラを併用して高精度な位置検出を実現する3Dオブジェクト検出器を提案する。
我々は,連続畳み込みを利用して画像とlidar特徴マップを異なるレベルの解像度で融合する,エンドツーエンド学習可能なアーキテクチャを設計した。
論文 参考訳(メタデータ) (2020-12-20T18:43:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。