論文の概要: Improving Minimum Bayes Risk Decoding with Multi-Prompt
- arxiv url: http://arxiv.org/abs/2407.15343v2
- Date: Thu, 3 Oct 2024 22:14:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:56:37.637800
- Title: Improving Minimum Bayes Risk Decoding with Multi-Prompt
- Title(参考訳): マルチプロンプトによる最小ベイズリスクデコーディングの改善
- Authors: David Heineman, Yao Dou, Wei Xu,
- Abstract要約: 提案するマルチプロンプト復号法では,多くの候補が推論時にプロンプトバンクから復号される。
候補をアンサンブルするために、最小ベイズリスク(MBR)デコーディングを使用し、トレーニングされた値メトリックを使用して最終的な出力を選択する。
- 参考スコア(独自算出の注目度): 10.401677244785166
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: While instruction fine-tuned LLMs are effective text generators, sensitivity to prompt construction makes performance unstable and sub-optimal in practice. Relying on a single "best" prompt cannot capture all differing approaches to a generation problem. Using this observation, we propose multi-prompt decoding, where many candidate generations are decoded from a prompt bank at inference-time. To ensemble candidates, we use Minimum Bayes Risk (MBR) decoding, which selects a final output using a trained value metric. We show multi-prompt improves MBR across a comprehensive set of conditional generation tasks, and show this is a result of estimating a more diverse and higher quality candidate space than that of a single prompt. Further experiments confirm multi-prompt improves generation across tasks, models and metrics.
- Abstract(参考訳): 命令の微調整 LLM は有効なテキストジェネレータである一方、迅速な構築に対する感度は性能を不安定にし、実際は準最適である。
一つの"ベスト"プロンプトをリライジングすることは、生成問題に対するすべての異なるアプローチを捉えることはできない。
そこで本研究では,提案するマルチプロンプト復号法を提案する。
候補をアンサンブルするために、最小ベイズリスク(MBR)デコーディングを使用し、トレーニングされた値メトリックを使用して最終的な出力を選択する。
条件生成タスクの包括的集合におけるマルチプロンプト改善を示すとともに、これは単一のプロンプトよりも多様で高品質な候補空間を推定した結果であることを示す。
さらに、マルチプロンプトはタスク、モデル、メトリクスをまたいだ生成を改善する。
関連論文リスト
- QPO: Query-dependent Prompt Optimization via Multi-Loop Offline Reinforcement Learning [58.767866109043055]
クエリ依存型プロンプト最適化(QPO)を導入し、入力クエリに合わせて最適なプロンプトを生成するために、小さな事前訓練された言語モデルを反復的に微調整する。
我々は、オープンソースのタスクに様々なプロンプトをベンチマークする副産物として、すでに大量に存在するオフラインのプロンプトデータから洞察を得る。
様々なLLMスケールと多様なNLPおよび数学タスクの実験は、ゼロショットと少数ショットの両方のシナリオにおいて、我々の手法の有効性とコスト効率を実証している。
論文 参考訳(メタデータ) (2024-08-20T03:06:48Z) - Large Language Models Prompting With Episodic Memory [53.8690170372303]
本稿では,POEM(PrOmpting with Episodic Memory)を提案する。
テストフェーズでは、各テストクエリのサンプルのシーケンスを最適化し、エピソードメモリにおけるトップkで最も類似したトレーニング例から最も高い合計報酬を得るシーケンスを選択する。
その結果,POEMはテキスト分類タスクにおいてTEMPERAやRLPromptといった最近の技術よりも5.3%向上していることがわかった。
論文 参考訳(メタデータ) (2024-08-14T11:19:28Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Task Facet Learning: A Structured Approach to Prompt Optimization [14.223730629357178]
本稿では,タスクの複数の面をトレーニング例から学習するアルゴリズムを提案する。
結果のアルゴリズムであるUniPromptは、各プロンプトセクションの初期候補を生成する生成モデルで構成されている。
複数のデータセットと実世界のタスクに対する経験的評価は、UniPromptを使って生成されたプロンプトが、人間のチューニングしたプロンプトよりも高い精度が得られることを示している。
論文 参考訳(メタデータ) (2024-06-15T04:54:26Z) - Multi-Prompting Decoder Helps Better Language Understanding [23.084538462710125]
本稿では,MaaS適応のためのMPD(Multi-Prompting Decoder)フレームワークを提案する。
提案手法は,複数の自然言語理解データセットに対して,数ショット設定で新たな最先端結果を実現する。
論文 参考訳(メタデータ) (2024-06-10T13:58:46Z) - Meta-Task Prompting Elicits Embeddings from Large Language Models [54.757445048329735]
本稿では,新しい教師なしテキスト埋め込み手法であるMeta-Task Prompting with Explicit One-Word Limitationを紹介する。
モデル微調整を必要とせずに,大規模言語モデルから高品質な文埋め込みを生成する。
提案法は,多種多様なシナリオにまたがって生成を組み込む汎用的で資源効率のよい手法を提供する。
論文 参考訳(メタデータ) (2024-02-28T16:35:52Z) - Generating Diverse and High-Quality Texts by Minimum Bayes Risk Decoding [4.209844101827474]
多様性目標を最小ベイズ・リスク復号化に適用することにより,多様性向上のための復号化アルゴリズムを開発した。
我々は、エンコーダデコーダモデルとプロンプト付き大規模言語モデルを用いて、様々な有向テキスト生成タスクにおいてDMBRとKMBRを評価する。
論文 参考訳(メタデータ) (2024-01-10T10:23:41Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
本稿では、強化学習(RL)を用いた離散的高速最適化手法RLPromptを提案する。
RLPromptは、マスク付きジベリッシュ(例:grammaBERT)や左から右へのモデル(例:GPT)など、様々な種類のLMに柔軟に適用可能である。
少数ショット分類と教師なしテキストスタイル転送の実験は、既存のファインタニングやプロンプト手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-05-25T07:50:31Z) - IDPG: An Instance-Dependent Prompt Generation Method [58.45110542003139]
Prompt tuningは、モデルトレーニング段階で各入力インスタンスにタスク固有のプロンプトを追加する、新しい、効率的なNLP転送学習パラダイムである。
本稿では,各入力インスタンスのプロンプトを生成する条件付きプロンプト生成手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T15:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。