論文の概要: X-Recon: Learning-based Patient-specific High-Resolution CT Reconstruction from Orthogonal X-Ray Images
- arxiv url: http://arxiv.org/abs/2407.15356v1
- Date: Mon, 22 Jul 2024 03:55:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:10:42.915780
- Title: X-Recon: Learning-based Patient-specific High-Resolution CT Reconstruction from Orthogonal X-Ray Images
- Title(参考訳): X-Recon: 直交X線画像からの患者特異的高分解能CT再構成
- Authors: Yunpeng Wang, Kang Wang, Yaoyao Zhuo, Weiya Shi, Fei Shan, Lei Liu,
- Abstract要約: X-Reconは、左右胸部X線画像に基づく再構成ネットワークである。
PTX-Segはゼロショット気胸セグメンテーションアルゴリズムである。
再現度はピーク信号対雑音比を含むいくつかの指標で最先端の性能を達成した。
- 参考スコア(独自算出の注目度): 14.04604990570727
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rapid and accurate diagnosis of pneumothorax, utilizing chest X-ray and computed tomography (CT), is crucial for assisted diagnosis. Chest X-ray is commonly used for initial localization of pneumothorax, while CT ensures accurate quantification. However, CT scans involve high radiation doses and can be costly. To achieve precise quantitative diagnosis while minimizing radiation exposure, we proposed X-Recon, a CT ultra-sparse reconstruction network based on ortho-lateral chest X-ray images. X-Recon integrates generative adversarial networks (GANs), including a generator with a multi-scale fusion rendering module and a discriminator enhanced by 3D coordinate convolutional layers, designed to facilitate CT reconstruction. To improve precision, a projective spatial transformer is utilized to incorporate multi-angle projection loss. Additionally, we proposed PTX-Seg, a zero-shot pneumothorax segmentation algorithm, combining image processing techniques with deep-learning models for the segmentation of air-accumulated regions and lung structures. Experiments on a large-scale dataset demonstrate its superiority over existing approaches. X-Recon achieved a significantly higher reconstruction resolution with a higher average spatial resolution and a lower average slice thickness. The reconstruction metrics achieved state-of-the-art performance in terms of several metrics including peak signal-to-noise ratio. The zero-shot segmentation algorithm, PTX-Seg, also demonstrated high segmentation precision for the air-accumulated region, the left lung, and the right lung. Moreover, the consistency analysis for the pneumothorax chest occupancy ratio between reconstructed CT and original CT obtained a high correlation coefficient. Code will be available at: https://github.com/wangyunpengbio/X-Recon
- Abstract(参考訳): 胸部X線とCTを併用した気胸の迅速かつ正確な診断が診断に不可欠である。
胸部X線は気胸の初期局在に一般的に用いられ、CTは正確な定量化を保証している。
しかし、CTスキャンには高い放射線線量が含まれており、費用がかかる可能性がある。
放射線照射を最小化しながら正確な定量的診断を実現するため, 胸部X線画像を用いたCT超スパース再構成ネットワークX-Reconを提案する。
X-Reconは、マルチスケールの融合レンダリングモジュールを備えたジェネレータと、CT再構成を容易にするために設計された3D座標畳み込み層によって強化された識別器を含む、生成的対向ネットワーク(GAN)を統合している。
精度を向上させるため、射影空間変換器を用いて多角射影損失を組み込む。
さらに, 空気蓄積領域と肺構造のセグメンテーションのための深層学習モデルと画像処理技術を組み合わせたゼロショット気胸セグメンテーションアルゴリズムPTX-Segを提案する。
大規模なデータセットの実験は、既存のアプローチよりも優れていることを示している。
X-Reconは、平均空間分解能が高く、平均スライス厚が低い、はるかに高い再構成分解能を実現した。
再現度はピーク信号対雑音比を含むいくつかの指標で最先端の性能を達成した。
ゼロショットセグメンテーションアルゴリズムPTX-Segは,空気蓄積領域,左肺,右肺に対して高いセグメンテーション精度を示した。
さらに,再建CTとオリジナルCTとの胸胸部占有率の整合性解析を行い,高い相関係数を得た。
コードは以下の通り。 https://github.com/wangyunpengbio/X-Recon
関連論文リスト
- FCDM: Sparse-view Sinogram Inpainting with Frequency Domain Convolution Enhanced Diffusion Models [14.043383277622874]
シングラムデータに適した新しい拡散型塗布フレームワークを提案する。
FCDMは既存の手法よりも優れており、SSIMが0.95以上、PSNRが30dB以上、SSIMが33%、PSNRが29%である。
論文 参考訳(メタデータ) (2024-08-26T12:31:38Z) - Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning [26.866131691476255]
術中CT画像は外科的指導に欠かせない資料であるが、必ずしも手軽に利用でき、実装も容易ではない。
本稿では,バイプレナーX線を用いた3次元CT再構成手法を提案する。
論文 参考訳(メタデータ) (2024-08-19T06:34:01Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
スパース・ビュー・コンピュート・トモグラフィー(SVCT)の再構成は,スパース・サンプリングによるCT画像の取得を目的としている。
暗黙的な神経表現(INR)技術は、不備のため、その分野に「かなりの穴」(すなわち、未モデル化空間)を残し、準最適結果をもたらす可能性がある。
SVCT再構成のためのホールフリー表現場を構築することを目的としたコーディネート型連続射影場(CoCPF)を提案する。
論文 参考訳(メタデータ) (2024-06-21T08:38:30Z) - XProspeCT: CT Volume Generation from Paired X-Rays [0.0]
我々は、X線画像をシミュレーションCTボリュームに変換するために、以前の研究に基づいて構築した。
モデルバリエーションには、UNetアーキテクチャ、カスタム接続、アクティベーション関数、損失関数、新しいバックプロジェクションアプローチなどがある。
論文 参考訳(メタデータ) (2024-02-11T21:57:49Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
改良された深層学習手法は、画像のノイズを除去する能力を示しているが、正確な地上の真実を必要とする。
畳み込みニューラルネットワーク(CNN)のトレーニングに基礎的真理を必要としないLDCTのための新しい自己教師型フレームワークを提案する。
数値および実験結果から,Sparse View を用いた N2I の再構成精度は低下しており,提案手法は異なる範囲のサンプリング角度で画像品質を向上する。
論文 参考訳(メタデータ) (2023-12-19T22:40:51Z) - CT Reconstruction from Few Planar X-rays with Application towards
Low-resource Radiotherapy [20.353246282326943]
先行データ分布を用いた5次元平面X線観測からCTボリュームを生成する手法を提案する。
臨床に関連のある特徴に焦点をあてるために,本モデルは訓練中に解剖学的指導を活用できる。
本手法は, 標準画素, 構造レベルの基準値から, 近年のスパースCT再建基準値よりも優れている。
論文 参考訳(メタデータ) (2023-08-04T01:17:57Z) - Accurate Fine-Grained Segmentation of Human Anatomy in Radiographs via
Volumetric Pseudo-Labeling [66.75096111651062]
我々は,10,021個の胸部CTと157個のラベルの大規模データセットを作成した。
解剖学的擬似ラベル抽出のために3次元解剖分類モデルのアンサンブルを適用した。
得られたセグメンテーションモデルはCXRで顕著な性能を示した。
論文 参考訳(メタデータ) (2023-06-06T18:01:08Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGASは、アンダーサンプドトモグラフィビューを合成し、再構成画像中のアーティファクトのエイリアスを緩和する自己教師手法を提案する。
高解像度4Dデータ上でのディープニューラルネットワークの大規模なメモリコストに対処するため、REGASは分散して微分可能なフォワードプロジェクションを可能にする新しいレイパス変換(RPT)を導入した。
論文 参考訳(メタデータ) (2022-08-17T03:42:19Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - Multi-scale reconstruction of undersampled spectral-spatial OCT data for
coronary imaging using deep learning [1.8359410255568984]
血管内光コヒーレンス断層撮影(IV OCT)は冠状動脈疾患(CAD)の診断・治療に最適であると考えられる。
高分解能と高速走査率のトレードオフがある。
本稿では,スペクトル領域と空間領域の両方でサンプリングプロセスをダウンスケールするスペクトル空間取得手法を提案する。
論文 参考訳(メタデータ) (2022-04-25T16:37:25Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。