Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning
- URL: http://arxiv.org/abs/2408.09731v2
- Date: Wed, 21 Aug 2024 01:58:43 GMT
- Title: Reconstruct Spine CT from Biplanar X-Rays via Diffusion Learning
- Authors: Zhi Qiao, Xuhui Liu, Xiaopeng Wang, Runkun Liu, Xiantong Zhen, Pei Dong, Zhen Qian,
- Abstract summary: Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement.
In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays.
- Score: 26.866131691476255
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intraoperative CT imaging serves as a crucial resource for surgical guidance; however, it may not always be readily accessible or practical to implement. In scenarios where CT imaging is not an option, reconstructing CT scans from X-rays can offer a viable alternative. In this paper, we introduce an innovative method for 3D CT reconstruction utilizing biplanar X-rays. Distinct from previous research that relies on conventional image generation techniques, our approach leverages a conditional diffusion process to tackle the task of reconstruction. More precisely, we employ a diffusion-based probabilistic model trained to produce 3D CT images based on orthogonal biplanar X-rays. To improve the structural integrity of the reconstructed images, we incorporate a novel projection loss function. Experimental results validate that our proposed method surpasses existing state-of-the-art benchmarks in both visual image quality and multiple evaluative metrics. Specifically, our technique achieves a higher Structural Similarity Index (SSIM) of 0.83, a relative increase of 10\%, and a lower Fr\'echet Inception Distance (FID) of 83.43, which represents a relative decrease of 25\%.
Related papers
- 3D-CT-GPT: Generating 3D Radiology Reports through Integration of Large Vision-Language Models [51.855377054763345]
This paper introduces 3D-CT-GPT, a Visual Question Answering (VQA)-based medical visual language model for generating radiology reports from 3D CT scans.
Experiments on both public and private datasets demonstrate that 3D-CT-GPT significantly outperforms existing methods in terms of report accuracy and quality.
arXiv Detail & Related papers (2024-09-28T12:31:07Z) - Coarse-Fine View Attention Alignment-Based GAN for CT Reconstruction from Biplanar X-Rays [22.136553745483305]
We propose a novel attention-informed coarse-to-fine cross-view fusion method to combine the features extracted from the biplanar views.
Experiments have demonstrated the superiority of our proposed method over the SOTA methods.
arXiv Detail & Related papers (2024-08-19T06:57:07Z) - DiffuX2CT: Diffusion Learning to Reconstruct CT Images from Biplanar X-Rays [41.393567374399524]
We propose DiffuX2CT, which models CT reconstruction from ultra-sparse X-rays as a conditional diffusion process.
By doing so, DiffuX2CT achieves structure-controllable reconstruction, which enables 3D structural information to be recovered from 2D X-rays.
As an extra contribution, we collect a real-world lumbar CT dataset, called LumbarV, as a new benchmark to verify the clinical significance and performance of CT reconstruction from X-rays.
arXiv Detail & Related papers (2024-07-18T14:20:04Z) - CoCPF: Coordinate-based Continuous Projection Field for Ill-Posed Inverse Problem in Imaging [78.734927709231]
Sparse-view computed tomography (SVCT) reconstruction aims to acquire CT images based on sparsely-sampled measurements.
Due to ill-posedness, implicit neural representation (INR) techniques may leave considerable holes'' (i.e., unmodeled spaces) in their fields, leading to sub-optimal results.
We propose the Coordinate-based Continuous Projection Field (CoCPF), which aims to build hole-free representation fields for SVCT reconstruction.
arXiv Detail & Related papers (2024-06-21T08:38:30Z) - SdCT-GAN: Reconstructing CT from Biplanar X-Rays with Self-driven
Generative Adversarial Networks [6.624839896733912]
This paper presents a new self-driven generative adversarial network model (SdCT-GAN) for reconstruction of 3D CT images.
It is motivated to pay more attention to image details by introducing a novel auto-encoder structure in the discriminator.
LPIPS evaluation metric is adopted that can quantitatively evaluate the fine contours and textures of reconstructed images better than the existing ones.
arXiv Detail & Related papers (2023-09-10T08:16:02Z) - XTransCT: Ultra-Fast Volumetric CT Reconstruction using Two Orthogonal
X-Ray Projections for Image-guided Radiation Therapy via a Transformer
Network [8.966238080182263]
We introduce a novel Transformer architecture, termed XTransCT, to facilitate real-time reconstruction of CT images from two-dimensional X-ray images.
Our findings indicate that our algorithm surpasses other methods in image quality, structural precision, and generalizability.
In comparison to previous 3D convolution-based approaches, we note a substantial speed increase of approximately 300 %, achieving 44 ms per 3D image reconstruction.
arXiv Detail & Related papers (2023-05-31T07:41:10Z) - Deep learning network to correct axial and coronal eye motion in 3D OCT
retinal imaging [65.47834983591957]
We propose deep learning based neural networks to correct axial and coronal motion artifacts in OCT based on a single scan.
The experimental result shows that the proposed method can effectively correct motion artifacts and achieve smaller error than other methods.
arXiv Detail & Related papers (2023-05-27T03:55:19Z) - Improving Computed Tomography (CT) Reconstruction via 3D Shape Induction [3.1498833540989413]
We propose shape induction, that is, learning the shape of 3D CT from X-ray without CT supervision, as a novel technique to incorporate realistic X-ray distributions during training of a reconstruction model.
Our experiments demonstrate that this process improves both the perceptual quality of generated CT and the accuracy of down-stream classification of pulmonary infectious diseases.
arXiv Detail & Related papers (2022-08-23T13:06:02Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
We propose a novel approach to translate unpaired contrast computed tomography (CT) scans to non-contrast CT scans.
Our approach is based on cycle-consistent generative adversarial convolutional transformers, for short, CyTran.
Our empirical results show that CyTran outperforms all competing methods.
arXiv Detail & Related papers (2021-10-12T23:25:03Z) - XraySyn: Realistic View Synthesis From a Single Radiograph Through CT
Priors [118.27130593216096]
A radiograph visualizes the internal anatomy of a patient through the use of X-ray, which projects 3D information onto a 2D plane.
To the best of our knowledge, this is the first work on radiograph view synthesis.
We show that by gaining an understanding of radiography in 3D space, our method can be applied to radiograph bone extraction and suppression without groundtruth bone labels.
arXiv Detail & Related papers (2020-12-04T05:08:53Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.