Imposter.AI: Adversarial Attacks with Hidden Intentions towards Aligned Large Language Models
- URL: http://arxiv.org/abs/2407.15399v1
- Date: Mon, 22 Jul 2024 06:04:29 GMT
- Title: Imposter.AI: Adversarial Attacks with Hidden Intentions towards Aligned Large Language Models
- Authors: Xiao Liu, Liangzhi Li, Tong Xiang, Fuying Ye, Lu Wei, Wangyue Li, Noa Garcia,
- Abstract summary: This study unveils an attack mechanism that capitalizes on human conversation strategies to extract harmful information from large language models.
Unlike conventional methods that target explicit malicious responses, our approach delves deeper into the nature of the information provided in responses.
- Score: 13.225041704917905
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the development of large language models (LLMs) like ChatGPT, both their vast applications and potential vulnerabilities have come to the forefront. While developers have integrated multiple safety mechanisms to mitigate their misuse, a risk remains, particularly when models encounter adversarial inputs. This study unveils an attack mechanism that capitalizes on human conversation strategies to extract harmful information from LLMs. We delineate three pivotal strategies: (i) decomposing malicious questions into seemingly innocent sub-questions; (ii) rewriting overtly malicious questions into more covert, benign-sounding ones; (iii) enhancing the harmfulness of responses by prompting models for illustrative examples. Unlike conventional methods that target explicit malicious responses, our approach delves deeper into the nature of the information provided in responses. Through our experiments conducted on GPT-3.5-turbo, GPT-4, and Llama2, our method has demonstrated a marked efficacy compared to conventional attack methods. In summary, this work introduces a novel attack method that outperforms previous approaches, raising an important question: How to discern whether the ultimate intent in a dialogue is malicious?
Related papers
- Reasoning-Augmented Conversation for Multi-Turn Jailbreak Attacks on Large Language Models [53.580928907886324]
Reasoning-Augmented Conversation is a novel multi-turn jailbreak framework.
It reformulates harmful queries into benign reasoning tasks.
We show that RACE achieves state-of-the-art attack effectiveness in complex conversational scenarios.
arXiv Detail & Related papers (2025-02-16T09:27:44Z) - Topic-FlipRAG: Topic-Orientated Adversarial Opinion Manipulation Attacks to Retrieval-Augmented Generation Models [22.296368955665475]
We propose a two-stage manipulation attack pipeline that crafts adversarial perturbations to influence opinions across related queries.
Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics.
arXiv Detail & Related papers (2025-02-03T14:21:42Z) - Illusions of Relevance: Using Content Injection Attacks to Deceive Retrievers, Rerankers, and LLM Judges [52.96987928118327]
We find that embedding models for retrieval, rerankers, and large language model (LLM) relevance judges are vulnerable to content injection attacks.
We identify two primary threats: (1) inserting unrelated or harmful content within passages that still appear deceptively "relevant", and (2) inserting entire queries or key query terms into passages to boost their perceived relevance.
Our study systematically examines the factors that influence an attack's success, such as the placement of injected content and the balance between relevant and non-relevant material.
arXiv Detail & Related papers (2025-01-30T18:02:15Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.
PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.
To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues [88.96201324719205]
This study exposes the safety vulnerabilities of Large Language Models (LLMs) in multi-turn interactions.
We introduce ActorAttack, a novel multi-turn attack method inspired by actor-network theory.
arXiv Detail & Related papers (2024-10-14T16:41:49Z) - You Know What I'm Saying: Jailbreak Attack via Implicit Reference [22.520950422702757]
This study identifies a previously overlooked vulnerability, which we term Attack via Implicit Reference (AIR)
AIR decomposes a malicious objective into permissible objectives and links them through implicit references within the context.
Our experiments demonstrate AIR's effectiveness across state-of-the-art LLMs, achieving an attack success rate (ASR) exceeding 90% on most models.
arXiv Detail & Related papers (2024-10-04T18:42:57Z) - Counterfactual Explainable Incremental Prompt Attack Analysis on Large Language Models [32.03992137755351]
This study sheds light on the imperative need to bolster safety and privacy measures in large language models (LLMs)
We propose Counterfactual Explainable Incremental Prompt Attack (CEIPA), a novel technique where we guide prompts in a specific manner to quantitatively measure attack effectiveness.
arXiv Detail & Related papers (2024-07-12T14:26:14Z) - Universal and Transferable Adversarial Attacks on Aligned Language
Models [118.41733208825278]
We propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors.
Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable.
arXiv Detail & Related papers (2023-07-27T17:49:12Z) - COVER: A Heuristic Greedy Adversarial Attack on Prompt-based Learning in
Language Models [4.776465250559034]
We propose a prompt-based adversarial attack on manual templates in black box scenarios.
First of all, we design character-level and word-level approaches to break manual templates separately.
And we present a greedy algorithm for the attack based on the above destructive approaches.
arXiv Detail & Related papers (2023-06-09T03:53:42Z) - On Evaluating Adversarial Robustness of Large Vision-Language Models [64.66104342002882]
We evaluate the robustness of large vision-language models (VLMs) in the most realistic and high-risk setting.
In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP.
Black-box queries on these VLMs can further improve the effectiveness of targeted evasion.
arXiv Detail & Related papers (2023-05-26T13:49:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.