論文の概要: Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
- arxiv url: http://arxiv.org/abs/2407.15408v1
- Date: Mon, 22 Jul 2024 06:25:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 16:00:55.280757
- Title: Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models
- Title(参考訳): 運動言語モデルの時間的グラウンド化のための時系列的精度検索
- Authors: Kent Fujiwara, Mikihiro Tanaka, Qing Yu,
- Abstract要約: 本研究では,動作言語モデルの時系列的理解を評価するために,時間的精度の高い検索手法を提案する。
テキスト記述をイベントに分解し、複合動作記述におけるイベントの順序をシャッフルすることで、負のテキストサンプルを作成する。
次に、動作言語モデルのための簡単なタスクを設計し、より可能性の高いテキストを、真実と時系列的にシャッフルされたバージョンから検索する。
- 参考スコア(独自算出の注目度): 12.221087476416056
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the release of large-scale motion datasets with textual annotations, the task of establishing a robust latent space for language and 3D human motion has recently witnessed a surge of interest. Methods have been proposed to convert human motion and texts into features to achieve accurate correspondence between them. Despite these efforts to align language and motion representations, we claim that the temporal element is often overlooked, especially for compound actions, resulting in chronological inaccuracies. To shed light on the temporal alignment in motion-language latent spaces, we propose Chronologically Accurate Retrieval (CAR) to evaluate the chronological understanding of the models. We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions. We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version. CAR reveals many cases where current motion-language models fail to distinguish the event chronology of human motion, despite their impressive performance in terms of conventional evaluation metrics. To achieve better temporal alignment between text and motion, we further propose to use these texts with shuffled sequence of events as negative samples during training to reinforce the motion-language models. We conduct experiments on text-motion retrieval and text-to-motion generation using the reinforced motion-language models, which demonstrate improved performance over conventional approaches, indicating the necessity to consider temporal elements in motion-language alignment.
- Abstract(参考訳): テキストアノテーションを備えた大規模モーションデータセットのリリースにより、言語と3D人間の動きのための堅牢な潜在空間を確立するタスクが、最近関心の高まりを目撃した。
人間の動きとテキストを特徴に変換する手法が提案されている。
言語と運動の表現を整合させるこれらの努力にもかかわらず、時間的要素はしばしば見過ごされ、特に複合行動のために、時間的不正確な結果をもたらすと主張している。
動作言語潜在空間における時間的アライメントを隠蔽するため,時間的精度の高いCAR(Choronologically Accurate Retrieval)を提案し,そのモデルに対する時間的理解を評価する。
テキスト記述をイベントに分解し、複合動作記述におけるイベントの順序をシャッフルすることで、負のテキストサンプルを作成する。
次に、動作言語モデルのための簡単なタスクを設計し、より可能性の高いテキストを、真実と時系列的にシャッフルされたバージョンから検索する。
CARは、従来の評価基準では印象的な性能であったにもかかわらず、現在の動き言語モデルが人間の動きの事象の時系列を区別できないケースが多いことを明らかにしている。
テキストと動きの時間的アライメントを改善するために、トレーニング中にイベントのシャッフルシーケンスを負のサンプルとして用いることで、動き言語モデルを強化することを提案する。
本研究では,従来の動作言語モデルを用いたテキスト・モーション・検索とテキスト・ツー・モーション・ジェネレーションの実験を行い,動作言語アライメントにおける時間的要素の検討の必要性を示す。
関連論文リスト
- Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
『無限運動』は、長文を長文から拡張運動生成に活用する新しいアプローチである。
我々のモデルの主な革新は、任意の長さのテキストを入力として受け入れることである。
テキストのタイムスタンプ設計を取り入れ、生成されたシーケンス内のローカルセグメントの正確な編集を可能にする。
論文 参考訳(メタデータ) (2024-07-11T12:33:56Z) - Joint-Dataset Learning and Cross-Consistent Regularization for Text-to-Motion Retrieval [4.454835029368504]
本稿では,自然動作記述に最も関係のあるシーケンスを検索することを目的とした,最近導入されたテキストモーション検索に注目した。
これらの有望な道を探究する最近の努力にもかかわらず、大きな課題は、堅牢なテキストモーションモデルをトレーニングするための不十分なデータである。
本稿では,複数のテキスト・モーション・データセットを同時にトレーニングする共同データセット学習について検討する。
また、骨格データのプロセスシーケンスに特定の時間的注意をあてる、MoT++と呼ばれるトランスフォーマーベースのモーションエンコーダも導入する。
論文 参考訳(メタデータ) (2024-07-02T09:43:47Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
テキスト駆動型ヒューマンモーション生成は、コンピュータ支援コンテンツ作成において重要なタスクの1つである。
既存の方法は訓練データ中の特定の動作表現に過度に適合することが多く、一般化する能力を妨げている。
一般化可能なヒューマンモーション生成のための強化学習において,パスとエラーのパラダイムを取り入れた textbfInstructMotion を提案する。
論文 参考訳(メタデータ) (2024-05-24T13:29:12Z) - Text-controlled Motion Mamba: Text-Instructed Temporal Grounding of Human Motion [21.750804738752105]
テキストベースヒューマンモーショングラウンドティング(THMG)の新たな課題について紹介する。
TM-Mambaは、時間的グローバルコンテキスト、言語クエリ制御、空間グラフトポロジを線形メモリコストのみで統合する統一モデルである。
BABEL-Groundingは、人間の行動の詳細なテキスト記述と対応する時間セグメントを提供する最初のテキスト・モーション・データセットである。
論文 参考訳(メタデータ) (2024-04-17T13:33:09Z) - DiffusionPhase: Motion Diffusion in Frequency Domain [69.811762407278]
そこで本研究では,テキスト記述から高品質な人間の動作系列を生成する学習手法を提案する。
既存の技術は、任意の長さの動き列を生成する際に、動きの多様性と滑らかな遷移に苦しむ。
動作空間をコンパクトで表現力のあるパラメータ化位相空間に変換するネットワークエンコーダを開発する。
論文 参考訳(メタデータ) (2023-12-07T04:39:22Z) - SemanticBoost: Elevating Motion Generation with Augmented Textual Cues [73.83255805408126]
我々のフレームワークはセマンティック・エンハンスメント・モジュールとコンテキスト調整型モーション・デノイザ(CAMD)から構成されている。
CAMDアプローチは、高品質でセマンティックに一貫性のあるモーションシーケンスを生成するための全エンコンパスソリューションを提供する。
実験の結果,SemanticBoostは拡散法として自己回帰法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-10-31T09:58:11Z) - Guided Attention for Interpretable Motion Captioning [0.0]
本稿では,解釈可能性を重視してテキスト生成品質を向上させる新しいアーキテクチャを提案する。
そこで本研究では,人間ライクな推論を促すために,トレーニング中の注意を導く方法を提案する。
我々は解釈可能性を活用して人間の動きに関するきめ細かい情報を導き出す。
論文 参考訳(メタデータ) (2023-10-11T09:14:30Z) - MotionGPT: Human Motion as a Foreign Language [47.21648303282788]
人間の動きは人間の言語に似た意味的な結合を示し、しばしば身体言語の一種として認識される。
大規模モーションモデルで言語データを融合することにより、動き言語事前学習は、動きに関連したタスクのパフォーマンスを向上させることができる。
我々は,複数の動作関連タスクを処理するために,統一的で汎用的でユーザフレンドリな動作言語モデルであるMotionGPTを提案する。
論文 参考訳(メタデータ) (2023-06-26T15:53:02Z) - Text-to-Motion Retrieval: Towards Joint Understanding of Human Motion
Data and Natural Language [4.86658723641864]
本研究では,特定の自然記述に基づいて関連動作を検索することを目的とした,新たなテキスト・ツー・モーション検索タスクを提案する。
テキスト対画像/ビデオマッチングの最近の進歩に触発されて、広く採用されている2つのメトリック学習損失関数を実験した。
論文 参考訳(メタデータ) (2023-05-25T08:32:41Z) - TEACH: Temporal Action Composition for 3D Humans [50.97135662063117]
自然言語の一連の記述を前提として,テキストに意味的に対応する3次元の人間の動作を生成する。
特に、我々のゴールは一連のアクションの合成を可能にすることであり、これは時間的アクション合成と呼ばれる。
論文 参考訳(メタデータ) (2022-09-09T00:33:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。