論文の概要: Empirical Capacity Model for Self-Attention Neural Networks
- arxiv url: http://arxiv.org/abs/2407.15425v2
- Date: Wed, 31 Jul 2024 10:27:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-01 19:55:28.159521
- Title: Empirical Capacity Model for Self-Attention Neural Networks
- Title(参考訳): 自己注意型ニューラルネットワークの実証能力モデル
- Authors: Aki Härmä, Marcin Pietrasik, Anna Wilbik,
- Abstract要約: 数十億のパラメータを持つ可能性のある大規模なトランスフォーマーモデルは、理論上、コンテンツを記憶する大きな能力を持っている。
本稿では,一般的なトレーニングアルゴリズムと合成トレーニングデータを用いて得られたモデルのメモリ容量に着目した。
- 参考スコア(独自算出の注目度): 6.679330155850875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large pretrained self-attention neural networks, or transformers, have been very successful in various tasks recently. The performance of a model on a given task depends on its ability to memorize and generalize the training data. Large transformer models, which may have billions of parameters, in theory have a huge capacity to memorize content. However, the current algorithms for the optimization fall short of the theoretical capacity, and the capacity is also highly dependent on the content. In this paper, we focus on the memory capacity of these models obtained using common training algorithms and synthetic training data. Based on the results, we derive an empirical capacity model (ECM) for a generic transformer. The ECM can be used to design task-specific transformer models with an optimal number of parameters in cases where the target memorization capability of the task can be defined.
- Abstract(参考訳): 大規模な事前学習型自己アテンションニューラルネットワーク(トランスフォーマー)は、近年、様々なタスクで大きな成功を収めている。
与えられたタスクにおけるモデルの性能は、トレーニングデータを記憶し、一般化する能力に依存する。
数十億のパラメータを持つ可能性のある大規模なトランスフォーマーモデルは、理論上、コンテンツを記憶する大きな能力を持っている。
しかし、現在の最適化アルゴリズムは理論的な能力に欠けており、その能力も内容に大きく依存している。
本稿では,一般的なトレーニングアルゴリズムと合成トレーニングデータを用いて得られたモデルのメモリ容量に着目した。
この結果に基づいて,汎用変換器の実証容量モデル(ECM)を導出する。
ECMは、タスクの目標記憶能力を定義する場合に最適なパラメータ数を持つタスク固有トランスフォーマーモデルの設計に使用できる。
関連論文リスト
- Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation [10.48108719012248]
我々は、より大規模な教師モデルを模倣するために、コンパクトな学生モデルを訓練する知識蒸留(KD)に焦点を当てる。
これまでの作業の多くとは対照的に、トレーニング中の学生モデルのパラメータをスケールアップする。
論文 参考訳(メタデータ) (2024-11-10T12:40:59Z) - Transferable Post-training via Inverse Value Learning [83.75002867411263]
別個のニューラルネットワーク(すなわち値ネットワーク)を用いた後学習におけるロジットレベルのモデリング変更を提案する。
このネットワークをデモを使って小さなベースモデルでトレーニングした後、推論中に他のトレーニング済みモデルとシームレスに統合することができる。
得られた値ネットワークは、パラメータサイズの異なる事前学習されたモデル間で広い転送性を有することを示す。
論文 参考訳(メタデータ) (2024-10-28T13:48:43Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
本稿では,学習可能なパラメータをわずかに限定して,事前学習した視覚変換器を下流認識タスクに適用する方法を示す。
学習可能で軽量なモジュールを用いてタスク固有のクエリを合成する。
本手法はメモリ制約下での最先端性能を実現し,実環境における適用性を示す。
論文 参考訳(メタデータ) (2024-07-09T15:45:04Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - Composable Function-preserving Expansions for Transformer Architectures [2.579908688646812]
最先端のニューラルネットワークのトレーニングには、計算と時間の面で高いコストが必要となる。
本稿では,変圧器ベースニューラルネットワークのサイズを漸進的に増加させるために,構成可能な6つの変換を提案する。
論文 参考訳(メタデータ) (2023-08-11T12:27:22Z) - Differential Evolution Algorithm based Hyper-Parameters Selection of
Transformer Neural Network Model for Load Forecasting [0.0]
トランスフォーマーモデルは、そのアテンションメカニズムから派生した長距離依存を学習できるため、ロード予測を改善する可能性がある。
我々の研究は,平均二乗誤差 (MSE) や平均絶対パーセンテージ誤差 (MAPE) といった数値に基づく負荷予測において,異なるメタヒューリスティックアルゴリズムと統合されたトランスフォーマーベースニューラルネットワークモデルを比較した。
論文 参考訳(メタデータ) (2023-07-28T04:29:53Z) - Transformers as Statisticians: Provable In-Context Learning with
In-Context Algorithm Selection [88.23337313766353]
この研究はまず、変換器がICLを実行するための包括的な統計理論を提供する。
コンテクストにおいて、トランスフォーマーは、幅広い種類の標準機械学習アルゴリズムを実装可能であることを示す。
エンフィングル変換器は、異なるベースICLアルゴリズムを適応的に選択することができる。
論文 参考訳(メタデータ) (2023-06-07T17:59:31Z) - Learning to Grow Pretrained Models for Efficient Transformer Training [72.20676008625641]
そこでは、より小さなモデルのパラメータを線形にマッピングして、より大きなモデルを初期化する。
言語と視覚のトランスフォーマーをまたいだ実験では、学習した線形成長演算子(LiGO)が、スクラッチから最大50%の計算コストを節約できることが示されています。
論文 参考訳(メタデータ) (2023-03-02T05:21:18Z) - The Underlying Correlated Dynamics in Neural Training [6.385006149689549]
ニューラルネットワークのトレーニングは、計算集約的なタスクである。
本稿では,パラメータのダイナミクスの相関に基づくモデルを提案する。
この表現は、基礎となるトレーニングダイナミクスの理解を深め、より良い加速技術を設計するための道を開くことができる。
論文 参考訳(メタデータ) (2022-12-18T08:34:11Z) - HyperTransformer: Model Generation for Supervised and Semi-Supervised
Few-Shot Learning [14.412066456583917]
本稿では,支援サンプルから直接畳み込みニューラルネットワーク(CNN)の重みを生成する,少数ショット学習のためのトランスフォーマーベースモデルを提案する。
本手法は,タスク非依存の定型埋め込みの学習が最適でない小ターゲットCNNアーキテクチャにおいて,特に有効である。
提案手法は,サポートセット内のラベルなしサンプルを利用した半教師付きシステムに拡張され,さらにショット性能が向上する。
論文 参考訳(メタデータ) (2022-01-11T20:15:35Z) - MoEfication: Conditional Computation of Transformer Models for Efficient
Inference [66.56994436947441]
トランスフォーマーベースの事前学習言語モデルは、パラメータ容量が大きいため、ほとんどのNLPタスクにおいて優れた性能を実現することができるが、計算コストも大きい。
スパースアクティベーション現象に基づく条件計算により,大規模モデル推論を高速化する。
そこで本研究では,モデルサイズが等しいMoE(Mix-of-experts)バージョン,すなわちMoEficationに変換することを提案する。
論文 参考訳(メタデータ) (2021-10-05T02:14:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。