論文の概要: Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2411.06448v1
- Date: Sun, 10 Nov 2024 12:40:59 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:09:50.984598
- Title: Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation
- Title(参考訳): テンソル分解による知識蒸留による過度パラメータ化学生モデル
- Authors: Yu-Liang Zhan, Zhong-Yi Lu, Hao Sun, Ze-Feng Gao,
- Abstract要約: 我々は、より大規模な教師モデルを模倣するために、コンパクトな学生モデルを訓練する知識蒸留(KD)に焦点を当てる。
これまでの作業の多くとは対照的に、トレーニング中の学生モデルのパラメータをスケールアップする。
- 参考スコア(独自算出の注目度): 10.48108719012248
- License:
- Abstract: Increased training parameters have enabled large pre-trained models to excel in various downstream tasks. Nevertheless, the extensive computational requirements associated with these models hinder their widespread adoption within the community. We focus on Knowledge Distillation (KD), where a compact student model is trained to mimic a larger teacher model, facilitating the transfer of knowledge of large models. In contrast to much of the previous work, we scale up the parameters of the student model during training, to benefit from overparameterization without increasing the inference latency. In particular, we propose a tensor decomposition strategy that effectively over-parameterizes the relatively small student model through an efficient and nearly lossless decomposition of its parameter matrices into higher-dimensional tensors. To ensure efficiency, we further introduce a tensor constraint loss to align the high-dimensional tensors between the student and teacher models. Comprehensive experiments validate the significant performance enhancement by our approach in various KD tasks, covering computer vision and natural language processing areas. Our code is available at https://github.com/intell-sci-comput/OPDF.
- Abstract(参考訳): トレーニングパラメータの増大により、大規模な事前学習モデルによって、さまざまな下流タスクのエクササイズが可能になった。
それでも、これらのモデルに関連する広範な計算要件は、コミュニティ内で広く採用されるのを妨げている。
我々は、より大規模な教師モデルを模倣するために、コンパクトな学生モデルを訓練し、大規模モデルの知識の伝達を容易にする知識蒸留(KD)に焦点を当てる。
従来の作業の多くとは対照的に、トレーニング中の学生モデルのパラメータをスケールアップし、推論遅延を増大させることなく過度なパラメータ化の恩恵を受けます。
特に, パラメータ行列を高次元テンソルに効率よく, ほぼロスレスに分解することで, 比較的小さな学生モデルを効果的に過度にパラメータ化するテンソル分解戦略を提案する。
効率性を確保するため,教師モデルと生徒モデルの間で高次元テンソルを整列させるために,テンソル制約損失を導入する。
総合的な実験により、コンピュータビジョンと自然言語処理領域をカバーする様々なKDタスクにおいて、我々のアプローチによる顕著な性能向上が検証された。
私たちのコードはhttps://github.com/intell-sci-comput/OPDFで公開されています。
関連論文リスト
- Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWGは拡散に基づくニューラルネットワーク重み生成技術であり、転送学習のために高性能な重みを効率よく生成する。
本稿では,ニューラルネットワーク重み生成のための遅延拡散パラダイムを再放送するために,生成的ハイパー表現学習を拡張した。
我々のアプローチは大規模言語モデル(LLM)のような大規模アーキテクチャにスケーラブルであり、現在のパラメータ生成技術の限界を克服しています。
論文 参考訳(メタデータ) (2024-02-28T08:34:23Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLMは自動回帰言語モデルのためのより効率的で効率的なKDフレームワークである。
DisiLLMは,(1)新しいスキューKulback-Leibler分散損失,(2)学生生成出力の効率向上を目的とした適応型オフ政治アプローチの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-02-06T11:10:35Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
知識蒸留(KD)は、効率的で軽量なモデルの性能を向上させる。
既存のKD技術のほとんどは、Kulback-Leibler(KL)の発散に依存している。
相関距離とネットワークプルーニングを利用したロバストネス強化知識蒸留(R2KD)を提案する。
論文 参考訳(メタデータ) (2023-11-23T11:34:48Z) - Efficient Compression of Overparameterized Deep Models through
Low-Dimensional Learning Dynamics [10.673414267895355]
本稿ではパラメータ化モデルを用いた新しい圧縮手法を提案する。
本アルゴリズムは, 一般化を損なうことなく, トレーニング効率を2倍以上に向上させる。
論文 参考訳(メタデータ) (2023-11-08T23:57:03Z) - Scaling Pre-trained Language Models to Deeper via Parameter-efficient
Architecture [68.13678918660872]
行列積演算子(MPO)に基づくより有能なパラメータ共有アーキテクチャを設計する。
MPO分解はパラメータ行列の情報を再編成し、2つの部分に分解することができる。
私たちのアーキテクチャは、モデルのサイズを減らすために、すべてのレイヤで中央テンソルを共有しています。
論文 参考訳(メタデータ) (2023-03-27T02:34:09Z) - Powerpropagation: A sparsity inducing weight reparameterisation [65.85142037667065]
我々は、本質的にスパースモデルにつながるニューラルネットワークの新しい重みパラメータ化であるPowerpropagationを紹介した。
この方法で訓練されたモデルは同様の性能を示すが、0で明らかに高い密度の分布を持ち、より多くのパラメータを安全に刈り取ることができる。
ここでは、Powerpropagationと従来のウェイトプルーニング技術と、最近の最先端スパース・トゥ・スパースアルゴリズムを組み合わせることで、ImageNetベンチマークで優れたパフォーマンスを示す。
論文 参考訳(メタデータ) (2021-10-01T10:03:57Z) - MixKD: Towards Efficient Distillation of Large-scale Language Models [129.73786264834894]
データに依存しない蒸留フレームワークであるMixKDを提案する。
妥当な条件下では、MixKDは誤差と経験的誤差の間のギャップを小さくする。
限定的なデータ設定とアブレーションによる実験は、提案手法の利点をさらに証明している。
論文 参考訳(メタデータ) (2020-11-01T18:47:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。