LLM-assisted Vector Similarity Search
- URL: http://arxiv.org/abs/2412.18819v2
- Date: Mon, 30 Dec 2024 04:15:42 GMT
- Title: LLM-assisted Vector Similarity Search
- Authors: Md Riyadh, Muqi Li, Felix Haryanto Lie, Jia Long Loh, Haotian Mi, Sayam Bohra,
- Abstract summary: This paper explores a hybrid approach combining vector similarity search with Large Language Models (LLMs) to enhance search accuracy and relevance.
Experiments on structured datasets demonstrate that while vector similarity search alone performs well for straightforward queries, the LLM-assisted approach excels in processing complex queries involving constraints, negations, or conceptual requirements.
- Score: 0.0
- License:
- Abstract: As data retrieval demands become increasingly complex, traditional search methods often fall short in addressing nuanced and conceptual queries. Vector similarity search has emerged as a promising technique for finding semantically similar information efficiently. However, its effectiveness diminishes when handling intricate queries with contextual nuances. This paper explores a hybrid approach combining vector similarity search with Large Language Models (LLMs) to enhance search accuracy and relevance. The proposed two-step solution first employs vector similarity search to shortlist potential matches, followed by an LLM for context-aware ranking of the results. Experiments on structured datasets demonstrate that while vector similarity search alone performs well for straightforward queries, the LLM-assisted approach excels in processing complex queries involving constraints, negations, or conceptual requirements. By leveraging the natural language understanding capabilities of LLMs, this method improves the accuracy of search results for complex tasks without sacrificing efficiency. We also discuss real-world applications and propose directions for future research to refine and scale this technique for diverse datasets and use cases. Original article: https://engineering.grab.com/llm-assisted-vector-similarity-search
Related papers
- VectorSearch: Enhancing Document Retrieval with Semantic Embeddings and
Optimized Search [1.0411820336052784]
We propose VectorSearch, which leverages advanced algorithms, embeddings, and indexing techniques for refined retrieval.
By utilizing innovative multi-vector search operations and encoding searches with advanced language models, our approach significantly improves retrieval accuracy.
Experiments on real-world datasets show that VectorSearch outperforms baseline metrics.
arXiv Detail & Related papers (2024-09-25T21:58:08Z) - Hybrid Semantic Search: Unveiling User Intent Beyond Keywords [0.0]
This paper addresses the limitations of traditional keyword-based search in understanding user intent.
It introduces a novel hybrid search approach that leverages the strengths of non-semantic search engines, Large Language Models (LLMs), and embedding models.
arXiv Detail & Related papers (2024-08-17T16:04:31Z) - Retrieval with Learned Similarities [2.729516456192901]
State-of-the-art retrieval algorithms have migrated to learned similarities.
We show that Mixture-of-Logits (MoL) can be realized empirically to achieve superior performance on diverse retrieval scenarios.
arXiv Detail & Related papers (2024-07-22T08:19:34Z) - Learning to Retrieve Iteratively for In-Context Learning [56.40100968649039]
iterative retrieval is a novel framework that empowers retrievers to make iterative decisions through policy optimization.
We instantiate an iterative retriever for composing in-context learning exemplars and apply it to various semantic parsing tasks.
By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever.
arXiv Detail & Related papers (2024-06-20T21:07:55Z) - Generative Retrieval as Multi-Vector Dense Retrieval [71.75503049199897]
Generative retrieval generates identifiers of relevant documents in an end-to-end manner.
Prior work has demonstrated that generative retrieval with atomic identifiers is equivalent to single-vector dense retrieval.
We show that generative retrieval and multi-vector dense retrieval share the same framework for measuring the relevance to a query of a document.
arXiv Detail & Related papers (2024-03-31T13:29:43Z) - Efficient Data Access Paths for Mixed Vector-Relational Search [8.80592433569832]
Machine learning and the adoption of data processing methods using vector embeddings sparked a great interest in creating systems for vector data management.
While the predominant approach of vector data management is to use specialized index structures for fast search over the entirety of the vector embeddings, once combined with other (meta)data, the search queries can also become selective on relational attributes.
As using vector indexes differs from traditional relational data access, we revisit and analyze alternative access paths for efficient mixed vector-relational search.
arXiv Detail & Related papers (2024-03-23T11:34:17Z) - Adaptive-RAG: Learning to Adapt Retrieval-Augmented Large Language Models through Question Complexity [59.57065228857247]
Retrieval-augmented Large Language Models (LLMs) have emerged as a promising approach to enhancing response accuracy in several tasks, such as Question-Answering (QA)
We propose a novel adaptive QA framework, that can dynamically select the most suitable strategy for (retrieval-augmented) LLMs based on the query complexity.
We validate our model on a set of open-domain QA datasets, covering multiple query complexities, and show that ours enhances the overall efficiency and accuracy of QA systems.
arXiv Detail & Related papers (2024-03-21T13:52:30Z) - AutoKG: Efficient Automated Knowledge Graph Generation for Language
Models [9.665916299598338]
AutoKG is a lightweight and efficient approach for automated knowledge graph construction.
Preliminary experiments demonstrate that AutoKG offers a more comprehensive and interconnected knowledge retrieval mechanism.
arXiv Detail & Related papers (2023-11-22T08:58:25Z) - Large Search Model: Redefining Search Stack in the Era of LLMs [63.503320030117145]
We introduce a novel conceptual framework called large search model, which redefines the conventional search stack by unifying search tasks with one large language model (LLM)
All tasks are formulated as autoregressive text generation problems, allowing for the customization of tasks through the use of natural language prompts.
This proposed framework capitalizes on the strong language understanding and reasoning capabilities of LLMs, offering the potential to enhance search result quality while simultaneously simplifying the existing cumbersome search stack.
arXiv Detail & Related papers (2023-10-23T05:52:09Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
We propose to learn an ensemble by leveraging existing methods in a relation-aware manner.
exploring these semantics using relation-aware ensemble leads to a much larger search space than general ensemble methods.
We propose a divide-search-combine algorithm RelEns-DSC that searches the relation-wise ensemble weights independently.
arXiv Detail & Related papers (2023-10-13T07:40:12Z) - PyGlove: Symbolic Programming for Automated Machine Learning [88.15565138144042]
We introduce a new way of programming AutoML based on symbolic programming.
Under this paradigm, ML programs are mutable, thus can be manipulated easily by another program.
We show that PyGlove users can easily convert a static program into a search space, quickly iterate on the search spaces and search algorithms, and craft complex search flows.
arXiv Detail & Related papers (2021-01-21T19:05:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.