MODRL-TA:A Multi-Objective Deep Reinforcement Learning Framework for Traffic Allocation in E-Commerce Search
- URL: http://arxiv.org/abs/2407.15476v1
- Date: Mon, 22 Jul 2024 08:40:27 GMT
- Title: MODRL-TA:A Multi-Objective Deep Reinforcement Learning Framework for Traffic Allocation in E-Commerce Search
- Authors: Peng Cheng, Huimu Wang, Jinyuan Zhao, Yihao Wang, Enqiang Xu, Yu Zhao, Zhuojian Xiao, Songlin Wang, Guoyu Tang, Lin Liu, Sulong Xu,
- Abstract summary: This paper propose a multi-objective deep reinforcement learning framework consisting of multi-objective Q-learning (MOQ), a decision fusion algorithm (DFM) based on the cross-entropy method(CEM) and a progressive data augmentation system(PDA)
Experiments on real-world online e-commerce systems demonstrate the significant improvements of MODRL-TA.
- Score: 13.893431289065997
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Traffic allocation is a process of redistributing natural traffic to products by adjusting their positions in the post-search phase, aimed at effectively fostering merchant growth, precisely meeting customer demands, and ensuring the maximization of interests across various parties within e-commerce platforms. Existing methods based on learning to rank neglect the long-term value of traffic allocation, whereas approaches of reinforcement learning suffer from balancing multiple objectives and the difficulties of cold starts within realworld data environments. To address the aforementioned issues, this paper propose a multi-objective deep reinforcement learning framework consisting of multi-objective Q-learning (MOQ), a decision fusion algorithm (DFM) based on the cross-entropy method(CEM), and a progressive data augmentation system(PDA). Specifically. MOQ constructs ensemble RL models, each dedicated to an objective, such as click-through rate, conversion rate, etc. These models individually determine the position of items as actions, aiming to estimate the long-term value of multiple objectives from an individual perspective. Then we employ DFM to dynamically adjust weights among objectives to maximize long-term value, addressing temporal dynamics in objective preferences in e-commerce scenarios. Initially, PDA trained MOQ with simulated data from offline logs. As experiments progressed, it strategically integrated real user interaction data, ultimately replacing the simulated dataset to alleviate distributional shifts and the cold start problem. Experimental results on real-world online e-commerce systems demonstrate the significant improvements of MODRL-TA, and we have successfully deployed MODRL-TA on an e-commerce search platform.
Related papers
- FedReMa: Improving Personalized Federated Learning via Leveraging the Most Relevant Clients [13.98392319567057]
Federated Learning (FL) is a distributed machine learning paradigm that achieves a globally robust model through decentralized computation and periodic model synthesis.
Despite their wide adoption, existing FL and PFL works have yet to comprehensively address the class-imbalance issue.
We propose FedReMa, an efficient PFL algorithm that can tackle class-imbalance by utilizing an adaptive inter-client co-learning approach.
arXiv Detail & Related papers (2024-11-04T05:44:28Z) - MetaTrading: An Immersion-Aware Model Trading Framework for Vehicular Metaverse Services [94.61039892220037]
We present a novel immersion-aware model trading framework that incentivizes metaverse users (MUs) to contribute learning models for augmented reality (AR) services in the vehicular metaverse.
Considering dynamic network conditions and privacy concerns, we formulate the reward decisions of MSPs as a multi-agent Markov decision process.
Experimental results demonstrate that the proposed framework can effectively provide higher-value models for object detection and classification in AR services on real AR-related vehicle datasets.
arXiv Detail & Related papers (2024-10-25T16:20:46Z) - Multi-Stream Cellular Test-Time Adaptation of Real-Time Models Evolving in Dynamic Environments [53.79708667153109]
Smart objects, notably autonomous vehicles, face challenges in critical local computations due to limited resources.
We propose a novel Multi-Stream Cellular Test-Time Adaptation setup where models adapt on the fly to a dynamic environment divided into cells.
We validate our methodology in the context of autonomous vehicles navigating across cells defined based on location and weather conditions.
arXiv Detail & Related papers (2024-04-27T15:00:57Z) - Communication-Efficient Multimodal Federated Learning: Joint Modality
and Client Selection [14.261582708240407]
Multimodal Federated learning (FL) aims to enrich model training in FL settings where clients are collecting measurements across multiple modalities.
Key challenges to multimodal FL remain unaddressed, particularly in heterogeneous network settings.
We propose mmFedMC, a new FL methodology that can tackle the above-mentioned challenges in multimodal settings.
arXiv Detail & Related papers (2024-01-30T02:16:19Z) - Data-Efficient Task Generalization via Probabilistic Model-based Meta
Reinforcement Learning [58.575939354953526]
PACOH-RL is a novel model-based Meta-Reinforcement Learning (Meta-RL) algorithm designed to efficiently adapt control policies to changing dynamics.
Existing Meta-RL methods require abundant meta-learning data, limiting their applicability in settings such as robotics.
Our experiment results demonstrate that PACOH-RL outperforms model-based RL and model-based Meta-RL baselines in adapting to new dynamic conditions.
arXiv Detail & Related papers (2023-11-13T18:51:57Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Learning to Continuously Optimize Wireless Resource in a Dynamic
Environment: A Bilevel Optimization Perspective [52.497514255040514]
This work develops a new approach that enables data-driven methods to continuously learn and optimize resource allocation strategies in a dynamic environment.
We propose to build the notion of continual learning into wireless system design, so that the learning model can incrementally adapt to the new episodes.
Our design is based on a novel bilevel optimization formulation which ensures certain fairness" across different data samples.
arXiv Detail & Related papers (2021-05-03T07:23:39Z) - Relation-aware Meta-learning for Market Segment Demand Prediction with
Limited Records [40.33535461064516]
We propose a novel algorithm, RMLDP, to incorporate a multi-pattern fusion network (MPFN) with a meta-learning paradigm.
We conduct extensive experiments on two large-scale industrial datasets.
The results justify that our RMLDP outperforms a set of state-of-the-art baselines.
arXiv Detail & Related papers (2020-08-01T06:02:16Z) - MoTiAC: Multi-Objective Actor-Critics for Real-Time Bidding [47.555870679348416]
We propose a Multi-ecTive Actor-Critics algorithm named MoTiAC for the problem of bidding optimization with various goals.
Unlike previous RL models, the proposed MoTiAC can simultaneously fulfill multi-objective tasks in complicated bidding environments.
arXiv Detail & Related papers (2020-02-18T07:16:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.