論文の概要: Fast Preemption: Forward-Backward Cascade Learning for Efficient and Transferable Proactive Adversarial Defense
- arxiv url: http://arxiv.org/abs/2407.15524v4
- Date: Tue, 12 Nov 2024 02:47:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-13 13:16:00.285244
- Title: Fast Preemption: Forward-Backward Cascade Learning for Efficient and Transferable Proactive Adversarial Defense
- Title(参考訳): 高速プリエンプション:効率的かつ伝達可能な対向防御のための前方後方カスケード学習
- Authors: Hanrui Wang, Ching-Chun Chang, Chun-Shien Lu, Isao Echizen,
- Abstract要約: ディープラーニング技術は、敵の攻撃に敏感なため、信頼できないものになっている。
我々は、メディアを前もって保護することによる先進的な戦略を考案した。
われわれは、ホワイトボックス適応的回帰攻撃(英語版)の知識を生かした最初の方法も考案した。
- 参考スコア(独自算出の注目度): 13.252842556505174
- License:
- Abstract: Deep learning technology has brought convenience and advanced developments but has become untrustworthy due to its sensitivity to adversarial attacks. Attackers may utilize this sensitivity to manipulate predictions. To defend against such attacks, existing anti-adversarial methods typically counteract adversarial perturbations post-attack, while we have devised a proactive strategy that preempts by safeguarding media upfront, effectively neutralizing potential adversarial effects before the third-party attacks occur. This strategy, dubbed Fast Preemption, provides an efficient transferable preemptive defense by using different models for labeling inputs and learning crucial features. A forward-backward cascade learning algorithm is used to compute protective perturbations, starting with forward propagation optimization to achieve rapid convergence, followed by iterative backward propagation learning to alleviate overfitting. This strategy offers state-of-the-art transferability and protection across various systems. With the running of only three steps, our Fast Preemption framework outperforms benchmark training-time, test-time, and preemptive adversarial defenses. We have also devised the first, to our knowledge, effective white-box adaptive reversion attack and demonstrate that the protection added by our defense strategy is irreversible unless the backbone model, algorithm, and settings are fully compromised. This work provides a new direction to developing proactive defenses against adversarial attacks.
- Abstract(参考訳): ディープラーニング技術は、利便性と高度な開発をもたらしたが、敵の攻撃に敏感なため、信頼できないものになっている。
攻撃者はこの感度を利用して予測を操作できる。
このような攻撃を防ごうとして、既存の反敵的手法は、通常、攻撃後の敵対的摂動に反するが、我々は、メディアを前もって守ることによる予防策を考案し、サードパーティによる攻撃が起こる前に、潜在的敵対的効果を効果的に中和する。
この戦略はFast Preemptionと呼ばれ、入力のラベル付けや重要な特徴の学習に異なるモデルを使用することで、効率的な転送可能なプリエンプティブ・ディフェンスを提供する。
前方方向のカスケード学習アルゴリズムを用いて保護摂動を計算し、前方方向の伝搬最適化から高速収束を実現する。
この戦略は、様々なシステムにわたる最先端の転送性と保護を提供する。
私たちのFast Preemptionフレームワークはわずか3ステップで、ベンチマークのトレーニング時間、テスト時間、プリエンプティブの敵防御よりも優れています。
また、我々の知識に則って、効果的なホワイトボックス適応的回帰攻撃を考案し、バックボーンモデル、アルゴリズム、設定が完全に損なわれない限り、防衛戦略によって追加された保護は不可逆であることを示した。
この研究は、敵の攻撃に対する積極的な防御を開発するための新しい方向を提供する。
関連論文リスト
- Test-time Adversarial Defense with Opposite Adversarial Path and High Attack Time Cost [5.197034517903854]
対向対向経路(OAP)に沿った拡散に基づく新しい対向防御法について検討する。
我々は、敵攻撃に抵抗するために、事前訓練されたモデルに差し込むことができる浄化器を提案する。
論文 参考訳(メタデータ) (2024-10-22T08:32:17Z) - SEEP: Training Dynamics Grounds Latent Representation Search for Mitigating Backdoor Poisoning Attacks [53.28390057407576]
現代のNLPモデルは、様々なソースから引き出された公開データセットでしばしば訓練される。
データ中毒攻撃は、攻撃者が設計した方法でモデルの振る舞いを操作できる。
バックドア攻撃に伴うリスクを軽減するために、いくつかの戦略が提案されている。
論文 参考訳(メタデータ) (2024-05-19T14:50:09Z) - MPAT: Building Robust Deep Neural Networks against Textual Adversarial
Attacks [4.208423642716679]
本稿では,敵対的攻撃に対する堅牢な深層ニューラルネットワーク構築のための悪質な摂動に基づく敵対的訓練法を提案する。
具体的には、悪意のある摂動を伴う敵例を生成するために、多段階の悪意のあるサンプル生成戦略を構築する。
本研究では, 目標達成のために, 目標達成のための新たな訓練目標関数を, 本来のタスクの性能を損なうことなく採用する。
論文 参考訳(メタデータ) (2024-02-29T01:49:18Z) - Mutual-modality Adversarial Attack with Semantic Perturbation [81.66172089175346]
本稿では,相互モダリティ最適化スキームにおける敵攻撃を生成する新しい手法を提案する。
我々の手法は最先端の攻撃方法より優れており、プラグイン・アンド・プレイ・ソリューションとして容易にデプロイできる。
論文 参考訳(メタデータ) (2023-12-20T05:06:01Z) - Continual Adversarial Defense [37.37029638528458]
防衛システムは、敵データをオンラインで継続的に収集し、迅速に自己改善する。
新たな攻撃への継続的な適応は、壊滅的な忘れ、少数ショット適応、メモリ効率適応、クリーンデータと逆データの両方において高い精度である。
特にCADは、前回の攻撃に対して優れた性能を維持しつつ、最小限の予算と低コストの防衛失敗に迅速に適応することができる。
論文 参考訳(メタデータ) (2023-12-15T01:38:26Z) - Guidance Through Surrogate: Towards a Generic Diagnostic Attack [101.36906370355435]
我々は、攻撃最適化中に局所最小限を避けるための誘導機構を開発し、G-PGAと呼ばれる新たな攻撃に繋がる。
修正された攻撃では、ランダムに再起動したり、多数の攻撃を繰り返したり、最適なステップサイズを検索したりする必要がありません。
効果的な攻撃以上に、G-PGAは敵防御における勾配マスキングによる解離性堅牢性を明らかにするための診断ツールとして用いられる。
論文 参考訳(メタデータ) (2022-12-30T18:45:23Z) - Projective Ranking-based GNN Evasion Attacks [52.85890533994233]
グラフニューラルネットワーク(GNN)は、グラフ関連のタスクに対して、有望な学習方法を提供する。
GNNは敵の攻撃の危険にさらされている。
論文 参考訳(メタデータ) (2022-02-25T21:52:09Z) - Model-Agnostic Meta-Attack: Towards Reliable Evaluation of Adversarial
Robustness [53.094682754683255]
モデル非依存型メタアタック(MAMA)アプローチにより,より強力な攻撃アルゴリズムを自動検出する。
本手法は、繰り返しニューラルネットワークによってパラメータ化された逆攻撃を学習する。
本研究では,未知の防御を攻撃した場合の学習能力を向上させるために,モデルに依存しない訓練アルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-10-13T13:54:24Z) - Guided Adversarial Attack for Evaluating and Enhancing Adversarial
Defenses [59.58128343334556]
我々は、より適切な勾配方向を見つけ、攻撃効果を高め、より効率的な対人訓練をもたらす標準損失に緩和項を導入する。
本稿では, クリーン画像の関数マッピングを用いて, 敵生成を誘導するGAMA ( Guided Adversarial Margin Attack) を提案する。
また,一段防衛における最先端性能を実現するためのGAT ( Guided Adversarial Training) を提案する。
論文 参考訳(メタデータ) (2020-11-30T16:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。