論文の概要: StylusAI: Stylistic Adaptation for Robust German Handwritten Text Generation
- arxiv url: http://arxiv.org/abs/2407.15608v1
- Date: Mon, 22 Jul 2024 13:08:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-23 15:01:15.053890
- Title: StylusAI: Stylistic Adaptation for Robust German Handwritten Text Generation
- Title(参考訳): StylusAI:ロバストなドイツ語手書きテキスト生成のための静的適応
- Authors: Nauman Riaz, Saifullah Saifullah, Stefan Agne, Andreas Dengel, Sheraz Ahmed,
- Abstract要約: StylusAIは、ある言語の筆跡のスタイリスティックなニュアンスを他の言語に適応させ、統合するように設計されている。
StylusAIの開発と評価を支援するために,lqDeutscher Handschriften-Datensatzrq(DHSD)データセットを提案する。
- 参考スコア(独自算出の注目度): 4.891597567642704
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this study, we introduce StylusAI, a novel architecture leveraging diffusion models in the domain of handwriting style generation. StylusAI is specifically designed to adapt and integrate the stylistic nuances of one language's handwriting into another, particularly focusing on blending English handwriting styles into the context of the German writing system. This approach enables the generation of German text in English handwriting styles and German handwriting styles into English, enriching machine-generated handwriting diversity while ensuring that the generated text remains legible across both languages. To support the development and evaluation of StylusAI, we present the \lq{Deutscher Handschriften-Datensatz}\rq~(DHSD), a comprehensive dataset encompassing 37 distinct handwriting styles within the German language. This dataset provides a fundamental resource for training and benchmarking in the realm of handwritten text generation. Our results demonstrate that StylusAI not only introduces a new method for style adaptation in handwritten text generation but also surpasses existing models in generating handwriting samples that improve both text quality and stylistic fidelity, evidenced by its performance on the IAM database and our newly proposed DHSD. Thus, StylusAI represents a significant advancement in the field of handwriting style generation, offering promising avenues for future research and applications in cross-linguistic style adaptation for languages with similar scripts.
- Abstract(参考訳): 本研究では,手書きスタイル生成の領域における拡散モデルを利用した新しいアーキテクチャであるStylusAIを紹介する。
StylusAIは特に、ある言語の筆跡の文体的なニュアンスを他の言語に統合し、特にドイツ語の筆跡体系の文脈に英語の筆跡スタイルをブレンドすることに焦点を当てるように設計されている。
このアプローチは、英語の筆跡書体とドイツ語の筆跡書体でドイツ語のテキストを英語に生成し、機械による筆跡の多様性を高めつつ、生成されたテキストが両方の言語で合法であることを保証する。
StylusAIの開発と評価を支援するために,ドイツ語の37種類の筆跡を包含する包括的データセットである \lq{Deutscher Handschriften-Datensatz}\rq~(DHSD)を提案する。
このデータセットは手書きテキスト生成の領域でトレーニングとベンチマークを行うための基本的なリソースを提供する。
以上の結果から,手書きテキスト生成におけるスタイル適応法は,テキスト品質とスタイルの忠実さを両立させる手書きサンプル生成において,既存のモデルに勝るものであることが示唆された。
このように、StylusAIは手書きスタイル生成の分野で大きな進歩を見せており、同様のスクリプトを持つ言語に対する言語間スタイル適応における将来の研究や応用に有望な道のりを提供している。
関連論文リスト
- Learning to Generate Text in Arbitrary Writing Styles [6.7308816341849695]
言語モデルは、潜在的に小さな文章サンプルに基づいて、著者固有のスタイルでテキストを作成することが望ましい。
本稿では,テクスチャ的特徴を捉えた対照的に訓練された表現を用いて,ターゲットスタイルのテキストを生成するための言語モデルを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:58:52Z) - MetaScript: Few-Shot Handwritten Chinese Content Generation via
Generative Adversarial Networks [15.037121719502606]
漢字のデジタル表現における個人的手書きスタイルの存在感の低下に対処する新しいコンテンツ生成システムであるMetaScriptを提案する。
本手法は,個人固有の手書きスタイルを保ち,デジタルタイピングの効率を維持できる漢字を生成するために,数ショット学習の力を利用する。
論文 参考訳(メタデータ) (2023-12-25T17:31:19Z) - Don't lose the message while paraphrasing: A study on content preserving
style transfer [61.38460184163704]
スタイル伝達研究の現実的な応用には,コンテンツ保存が不可欠である。
形式性伝達領域の例において、様々なスタイル転送モデルを比較する。
我々は,スタイル伝達のための最先端技術について,精密な比較研究を行っている。
論文 参考訳(メタデータ) (2023-08-17T15:41:08Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
本論文では,自然言語を用いて抽象芸術スタイルを記述するスタイル転送手法であるStylerDALLEを提案する。
具体的には、非自己回帰的なトークンシーケンス変換として、言語誘導型転送タスクを定式化する。
スタイル情報を組み込むために,CLIPに基づく言語指導による強化学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-16T12:44:44Z) - UIT-HWDB: Using Transferring Method to Construct A Novel Benchmark for
Evaluating Unconstrained Handwriting Image Recognition in Vietnamese [2.8360662552057323]
ベトナム語では、現代のラテン文字以外にアクセントと文字マークがあり、最新式の手書き認識法に混乱をもたらす。
低リソース言語として、ベトナムで手書き認識を研究するためのデータセットは少ない。
最近の研究は,ペンストローク座標を接続して構築したオンライン手書きデータセットの画像を用いてベトナムにおけるオフライン手書き認識手法の評価を行っている。
本稿では,オフライン手書き画像に必要な重要な自然属性を関連付ける手書き画像データセットを構築するための転送手法を提案する。
論文 参考訳(メタデータ) (2022-11-10T08:23:54Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - SLOGAN: Handwriting Style Synthesis for Arbitrary-Length and
Out-of-Vocabulary Text [35.83345711291558]
本稿では,任意の長文と語彙外文に対して,パラメータ化および制御可能な手書きスタイルを合成する手法を提案する。
我々は、容易に入手可能な印刷スタイルの画像を提供することで、テキストコンテンツを埋め込むことにより、コンテンツの多様性を柔軟に達成することができる。
本手法は,学習語彙に含まれない単語を,様々な新しいスタイルで合成することができる。
論文 参考訳(メタデータ) (2022-02-23T12:13:27Z) - Letter-level Online Writer Identification [86.13203975836556]
我々は文字レベルのオンラインライタIDという新たな問題に焦点をあてる。
主な課題は、しばしば異なるスタイルで手紙を書くことである。
我々はこの問題をオンライン書記スタイルのばらつき(Var-O-Styles)と呼ぶ。
論文 参考訳(メタデータ) (2021-12-06T07:21:53Z) - SmartPatch: Improving Handwritten Word Imitation with Patch
Discriminators [67.54204685189255]
本稿では,現在の最先端手法の性能を向上させる新手法であるSmartPatchを提案する。
我々は、よく知られたパッチ損失と、平行訓練された手書きテキスト認識システムから収集された情報を組み合わせる。
これにより、より強化された局所識別器が実現し、より現実的で高品質な手書き文字が生成される。
論文 参考訳(メタデータ) (2021-05-21T18:34:21Z) - Handwriting Transformers [98.3964093654716]
本稿では,スタイルコンテンツの絡み合いとグローバルおよびローカルライティングスタイルパターンの両方を学ぶことを目的とした,トランスフォーマティブベースの手書きテキスト画像生成手法であるhwtを提案する。
提案したHWTは, 自己認識機構を用いて, スタイルの例における長短距離関係をキャプチャする。
提案するHWTは,現実的な手書きテキスト画像を生成する。
論文 参考訳(メタデータ) (2021-04-08T17:59:43Z) - Generating Handwriting via Decoupled Style Descriptors [28.31500214381889]
本稿では,手書き文字のデクリプタモデルについて紹介する。
キャラクタレベルのスタイルとライタレベルのスタイルの両方を規定し、私たちのモデルが全体的なスタイルの空間を表現できるようにします。
実験では, 得られた結果の88%が, アートベースライン法の現状よりも好適であった。
論文 参考訳(メタデータ) (2020-08-26T02:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。