論文の概要: Towards Visual Text Design Transfer Across Languages
- arxiv url: http://arxiv.org/abs/2410.18823v2
- Date: Tue, 29 Oct 2024 08:24:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:42:16.195625
- Title: Towards Visual Text Design Transfer Across Languages
- Title(参考訳): 言語間のビジュアルテキストデザイン伝達に向けて
- Authors: Yejin Choi, Jiwan Chung, Sumin Shim, Giyeong Oh, Youngjae Yu,
- Abstract要約: マルチモーダル・スタイル翻訳(MuST-Bench)の新たな課題について紹介する。
MuST-Benchは、視覚テキスト生成モデルが様々な書き込みシステム間で翻訳を行う能力を評価するために設計されたベンチマークである。
そこで我々は,スタイル記述の必要性を解消する多モーダルなスタイル翻訳フレームワークであるSIGILを紹介した。
- 参考スコア(独自算出の注目度): 49.78504488452978
- License:
- Abstract: Visual text design plays a critical role in conveying themes, emotions, and atmospheres in multimodal formats such as film posters and album covers. Translating these visual and textual elements across languages extends the concept of translation beyond mere text, requiring the adaptation of aesthetic and stylistic features. To address this, we introduce a novel task of Multimodal Style Translation (MuST-Bench), a benchmark designed to evaluate the ability of visual text generation models to perform translation across different writing systems while preserving design intent. Our initial experiments on MuST-Bench reveal that existing visual text generation models struggle with the proposed task due to the inadequacy of textual descriptions in conveying visual design. In response, we introduce SIGIL, a framework for multimodal style translation that eliminates the need for style descriptions. SIGIL enhances image generation models through three innovations: glyph latent for multilingual settings, pretrained VAEs for stable style guidance, and an OCR model with reinforcement learning feedback for optimizing readable character generation. SIGIL outperforms existing baselines by achieving superior style consistency and legibility while maintaining visual fidelity, setting itself apart from traditional description-based approaches. We release MuST-Bench publicly for broader use and exploration https://huggingface.co/datasets/yejinc/MuST-Bench.
- Abstract(参考訳): ビジュアルテキストデザインは、映画ポスターやアルバムカバーといったマルチモーダルフォーマットでテーマ、感情、雰囲気を伝える上で重要な役割を果たす。
これらの視覚的要素とテキスト的要素を言語間で翻訳することは、単なるテキストを超えて翻訳の概念を拡張し、審美的特徴と様式的特徴の適応を必要とする。
そこで本研究では,設計意図を保ちながら,異なる書式システム間で翻訳を行う視覚テキスト生成モデルの能力を評価するためのベンチマークである,Multimodal Style Translation (MuST-Bench) を提案する。
MuST-Benchの初期実験では、既存のビジュアルテキスト生成モデルは、ビジュアルデザインを伝達するテキスト記述の不適切さのため、提案課題に苦慮していることが明らかとなった。
そこで我々は,スタイル記述の必要性を解消する多モーダルなスタイル翻訳フレームワークであるSIGILを紹介した。
SIGILは、多言語設定のためのグリフラテント、安定したスタイルガイダンスのための事前訓練されたVAE、読みやすい文字生成を最適化するための強化学習フィードバックを備えたOCRモデルという3つの革新を通じて、画像生成モデルを強化する。
SIGILは、視覚的忠実さを維持しながら、優れたスタイルの一貫性と正当性を達成し、従来の記述に基づくアプローチとは分離することで、既存のベースラインよりも優れています。
私たちは MuST-Bench を公開して,より広範な使用と探索のために https://huggingface.co/datasets/yejinc/MuST-Bench をリリースしています。
関連論文リスト
- ARTIST: Improving the Generation of Text-rich Images with Disentangled Diffusion Models [52.23899502520261]
テキスト構造学習に焦点を当てたARTISTという新しいフレームワークを提案する。
我々は、事前訓練されたテキスト構造モデルからテキスト構造情報を同化できるように、視覚拡散モデルを微調整する。
MARIO-Evalベンチマークの実証結果は,提案手法の有効性を裏付けるものであり,様々な指標において最大15%の改善が見られた。
論文 参考訳(メタデータ) (2024-06-17T19:31:24Z) - AnyTrans: Translate AnyText in the Image with Large Scale Models [88.5887934499388]
本稿では、画像中のタスク翻訳AnyText(TATI)のためのオール・エンコンパス・フレームワークであるAnyTransを紹介する。
我々のフレームワークは、翻訳中にテキスト要素と視覚要素の両方から文脈的手がかりを取り入れている。
6つの言語対の多言語テキスト画像翻訳データからなるMTIT6というテストデータセットを精巧にコンパイルした。
論文 参考訳(メタデータ) (2024-06-17T11:37:48Z) - StyleMaster: Towards Flexible Stylized Image Generation with Diffusion Models [42.45078883553856]
Stylized Text-to-Image Generation (STIG)は、テキストプロンプトとスタイル参照画像に基づいて画像を生成することを目的としている。
本稿では,事前学習した安定拡散を利用して,StyleMasterと呼ばれる新しいフレームワークを提案する。
2つの目的関数を導入し、モデルを最適化し、損失を減らし、セマンティクスとスタイルの一貫性をさらに強化する。
論文 参考訳(メタデータ) (2024-05-24T07:19:40Z) - Unified Language-Vision Pretraining in LLM with Dynamic Discrete Visual Tokenization [52.935150075484074]
非言語的なイメージを外国語のような個別のトークン列に変換するために、よく設計されたビジュアルトークン化器を導入する。
結果として得られる視覚トークンは、単語に相応しいハイレベルな意味論を含み、画像から変化する動的シーケンス長もサポートする。
この統合によりLaVITは、マルチモーダルコンテンツの理解と生成を同時に行うための印象的な汎用インターフェースとして機能する。
論文 参考訳(メタデータ) (2023-09-09T03:01:38Z) - ViLTA: Enhancing Vision-Language Pre-training through Textual
Augmentation [35.05755930636518]
画像とテキストのペア間の微細な表現をより容易に学習するための2つのコンポーネントからなるViLTAを提案する。
Masked Language Modeling (MLM) では,モデルの堅牢性を高めるために,ソフトラベルを生成するクロス蒸留法を提案する。
画像テキストマッチング(ITM)では、現在の言語エンコーダを利用して、言語入力のコンテキストに基づいてハードネガティブを合成する。
論文 参考訳(メタデータ) (2023-08-31T12:46:36Z) - Visually-Situated Natural Language Understanding with Contrastive
Reading Model and Frozen Large Language Models [24.456117679941816]
Contrastive Reading Model (Cream)は、Large Language Models (LLM)の言語画像理解能力を高めるために設計された、新しいニューラルネットワークである。
我々のアプローチは、視覚と言語理解のギャップを埋め、より洗練されたドキュメントインテリジェンスアシスタントの開発の道を開く。
論文 参考訳(メタデータ) (2023-05-24T11:59:13Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - Enhanced Modality Transition for Image Captioning [51.72997126838352]
MTM(Modality Transition Module)を構築し、言語モデルに転送する前に視覚的機能をセマンティック表現に転送します。
トレーニング段階では、モダリティ遷移ネットワークは提案されたモダリティ損失によって最適化される。
提案手法の有効性を示すMS-COCOデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2021-02-23T07:20:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。