Link Polarity Prediction from Sparse and Noisy Labels via Multiscale Social Balance
- URL: http://arxiv.org/abs/2407.15643v1
- Date: Mon, 22 Jul 2024 14:02:28 GMT
- Title: Link Polarity Prediction from Sparse and Noisy Labels via Multiscale Social Balance
- Authors: Marco Minici, Federico Cinus, Francesco Bonchi, Giuseppe Manco,
- Abstract summary: Signed Graph Neural Networks (SGNNs) have recently gained attention as an effective tool for several learning tasks on signed networks.
One of these tasks is to predict the polarity of the links for which this information is missing, starting from the network structure and the other available polarities.
In this work, we devise a semi-supervised learning framework that builds around the novel concept of emphmultiscale social balance to improve the prediction of link polarities.
- Score: 8.635930195821263
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Signed Graph Neural Networks (SGNNs) have recently gained attention as an effective tool for several learning tasks on signed networks, i.e., graphs where edges have an associated polarity. One of these tasks is to predict the polarity of the links for which this information is missing, starting from the network structure and the other available polarities. However, when the available polarities are few and potentially noisy, such a task becomes challenging. In this work, we devise a semi-supervised learning framework that builds around the novel concept of \emph{multiscale social balance} to improve the prediction of link polarities in settings characterized by limited data quantity and quality. Our model-agnostic approach can seamlessly integrate with any SGNN architecture, dynamically reweighting the importance of each data sample while making strategic use of the structural information from unlabeled edges combined with social balance theory. Empirical validation demonstrates that our approach outperforms established baseline models, effectively addressing the limitations imposed by noisy and sparse data. This result underlines the benefits of incorporating multiscale social balance into SGNNs, opening new avenues for robust and accurate predictions in signed network analysis.
Related papers
- Conformal Prediction for Federated Graph Neural Networks with Missing Neighbor Information [2.404163279345609]
This study extends the applicability of Conformal Prediction to federated graph learning.
We tackle the missing links issue in distributed subgraphs to minimize its adverse effects on CP set sizes.
We introduce a Variational Autoencoder-based approach for reconstructing missing neighbors to mitigate the negative impact of missing data.
arXiv Detail & Related papers (2024-10-17T20:22:25Z) - Signed Graph Autoencoder for Explainable and Polarization-Aware Network Embeddings [20.77134976354226]
Signed Graph Archetypal Autoencoder (SGAAE) framework designed for signed networks.
SGAAE extracts node-level representations that express node memberships over distinct extreme profiles.
Model achieves high performance in different tasks of signed link prediction across four real-world datasets.
arXiv Detail & Related papers (2024-09-16T16:40:40Z) - BScNets: Block Simplicial Complex Neural Networks [79.81654213581977]
Simplicial neural networks (SNN) have recently emerged as the newest direction in graph learning.
We present Block Simplicial Complex Neural Networks (BScNets) model for link prediction.
BScNets outperforms state-of-the-art models by a significant margin while maintaining low costs.
arXiv Detail & Related papers (2021-12-13T17:35:54Z) - SSSNET: Semi-Supervised Signed Network Clustering [4.895808607591299]
We introduce a novel probabilistic balanced normalized cut loss for training nodes in a GNN framework for semi-supervised signed network clustering, called SSSNET.
The main novelty approach is a new take on the role of social balance theory for signed network embeddings.
arXiv Detail & Related papers (2021-10-13T10:36:37Z) - MUSE: Multi-faceted Attention for Signed Network Embedding [4.442695760653947]
Signed network embedding is an approach to learn low-dimensional representations of nodes in signed networks with both positive and negative links.
We propose MUSE, a MUlti-faceted attention-based Signed network Embedding framework to tackle this problem.
arXiv Detail & Related papers (2021-04-29T16:09:35Z) - Distance-aware Molecule Graph Attention Network for Drug-Target Binding
Affinity Prediction [54.93890176891602]
We propose a diStance-aware Molecule graph Attention Network (S-MAN) tailored to drug-target binding affinity prediction.
As a dedicated solution, we first propose a position encoding mechanism to integrate the topological structure and spatial position information into the constructed pocket-ligand graph.
We also propose a novel edge-node hierarchical attentive aggregation structure which has edge-level aggregation and node-level aggregation.
arXiv Detail & Related papers (2020-12-17T17:44:01Z) - Interpretable Signed Link Prediction with Signed Infomax Hyperbolic
Graph [54.03786611989613]
signed link prediction in social networks aims to reveal the underlying relationships (i.e. links) among users (i.e. nodes)
We develop a unified framework, termed as Signed Infomax Hyperbolic Graph (textbfSIHG)
In order to model high-order user relations and complex hierarchies, the node embeddings are projected and measured in a hyperbolic space with a lower distortion.
arXiv Detail & Related papers (2020-11-25T05:09:03Z) - Information Obfuscation of Graph Neural Networks [96.8421624921384]
We study the problem of protecting sensitive attributes by information obfuscation when learning with graph structured data.
We propose a framework to locally filter out pre-determined sensitive attributes via adversarial training with the total variation and the Wasserstein distance.
arXiv Detail & Related papers (2020-09-28T17:55:04Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.