Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities
- URL: http://arxiv.org/abs/2407.15693v1
- Date: Mon, 22 Jul 2024 15:00:14 GMT
- Title: Fisher-Rao Gradient Flow: Geodesic Convexity and Functional Inequalities
- Authors: José A. Carrillo, Yifan Chen, Daniel Zhengyu Huang, Jiaoyang Huang, Dongyi Wei,
- Abstract summary: We provide a study on functional inequalities and the relevant geodesic convexity for Fisher-Rao gradient flows under minimal assumptions.
A notable feature of the obtained functional inequalities is that they do not depend on the log-concavity or log-Sobolev constants of the target distribution.
- Score: 7.099783891532113
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The dynamics of probability density functions has been extensively studied in science and engineering to understand physical phenomena and facilitate algorithmic design. Of particular interest are dynamics that can be formulated as gradient flows of energy functionals under the Wasserstein metric. The development of functional inequalities, such as the log-Sobolev inequality, plays a pivotal role in analyzing the convergence of these dynamics. The goal of this paper is to parallel the success of techniques using functional inequalities, for dynamics that are gradient flows under the Fisher-Rao metric, with various $f$-divergences as energy functionals. Such dynamics take the form of a nonlocal differential equation, for which existing analysis critically relies on using the explicit solution formula in special cases. We provide a comprehensive study on functional inequalities and the relevant geodesic convexity for Fisher-Rao gradient flows under minimal assumptions. A notable feature of the obtained functional inequalities is that they do not depend on the log-concavity or log-Sobolev constants of the target distribution. Consequently, the convergence rate of the dynamics (assuming well-posed) is uniform across general target distributions, making them potentially desirable dynamics for posterior sampling applications in Bayesian inference.
Related papers
- Hellinger-Kantorovich Gradient Flows: Global Exponential Decay of Entropy Functionals [52.154685604660465]
We investigate a family of gradient flows of positive and probability measures, focusing on the Hellinger-Kantorovich (HK) geometry.
A central contribution is a complete characterization of global exponential decay behaviors of entropy functionals under Otto-Wasserstein and Hellinger-type gradient flows.
arXiv Detail & Related papers (2025-01-28T16:17:09Z) - Kernel Approximation of Fisher-Rao Gradient Flows [52.154685604660465]
We present a rigorous investigation of Fisher-Rao and Wasserstein type gradient flows concerning their gradient structures, flow equations, and their kernel approximations.
Specifically, we focus on the Fisher-Rao geometry and its various kernel-based approximations, developing a principled theoretical framework.
arXiv Detail & Related papers (2024-10-27T22:52:08Z) - Hessian-Informed Flow Matching [4.542719108171107]
Hessian-Informed Flow Matching is a novel approach that integrates the Hessian of an energy function into conditional flows.
This integration allows HI-FM to account for local curvature and anisotropic covariance structures.
Empirical evaluations on the MNIST and Lennard-Jones particles datasets demonstrate that HI-FM improves the likelihood of test samples.
arXiv Detail & Related papers (2024-10-15T09:34:52Z) - Performance of wave function and Green's functions based methods for non equilibrium many-body dynamics [2.028938217928823]
Non equilibrium dynamics of quantum many-body systems are studied in terms of strong driving and weak driving fields.
We show that the compressed formulation based on similarity transformed Hamiltonians is practically exact in weak fields and, hence, weakly or moderately correlated systems.
The dynamics predicted by Green's functions in the (widely popular) GW approximation are less accurate by improve significantly upon the mean-field results in the strongly driven regime.
arXiv Detail & Related papers (2024-05-14T17:59:29Z) - Theoretical Insights for Diffusion Guidance: A Case Study for Gaussian
Mixture Models [59.331993845831946]
Diffusion models benefit from instillation of task-specific information into the score function to steer the sample generation towards desired properties.
This paper provides the first theoretical study towards understanding the influence of guidance on diffusion models in the context of Gaussian mixture models.
arXiv Detail & Related papers (2024-03-03T23:15:48Z) - Quantum correlation functions through tensor network path integral [0.0]
tensor networks are utilized for calculating equilibrium correlation function for open quantum systems.
The influence of the solvent on the quantum system is incorporated through an influence functional.
The design and implementation of this method is discussed along with illustrations from rate theory, symmetrized spin correlation functions, dynamical susceptibility calculations and quantum thermodynamics.
arXiv Detail & Related papers (2023-08-21T07:46:51Z) - Stochastic Langevin Differential Inclusions with Applications to Machine Learning [5.274477003588407]
We show some foundational results regarding the flow and properties of Langevin-type Differential Inclusions.
In particular, we show strong existence of the solution, as well as an canonical- minimization of the free-energy functional.
arXiv Detail & Related papers (2022-06-23T08:29:17Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - Assignment Flows for Data Labeling on Graphs: Convergence and Stability [69.68068088508505]
This paper establishes conditions on the weight parameters that guarantee convergence of the continuous-time assignment flow to integral assignments (labelings)
Several counter-examples illustrate that violating the conditions may entail unfavorable behavior of the assignment flow regarding contextual data classification.
arXiv Detail & Related papers (2020-02-26T15:45:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.