SAM2CLIP2SAM: Vision Language Model for Segmentation of 3D CT Scans for Covid-19 Detection
- URL: http://arxiv.org/abs/2407.15728v2
- Date: Tue, 23 Jul 2024 23:53:03 GMT
- Title: SAM2CLIP2SAM: Vision Language Model for Segmentation of 3D CT Scans for Covid-19 Detection
- Authors: Dimitrios Kollias, Anastasios Arsenos, James Wingate, Stefanos Kollias,
- Abstract summary: This paper presents a new approach for effective segmentation of images that can be integrated into any model and methodology.
Our approach includes a combination of vision-language models that segment the CT scans, which are then fed to a deep neural architecture, named RACNet, for Covid-19 detection.
Experiments are presented across two Covid-19 annotated databases which illustrate the improved performance obtained when our method has been used for segmentation of the CT scans.
- Score: 16.1664846590467
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper presents a new approach for effective segmentation of images that can be integrated into any model and methodology; the paradigm that we choose is classification of medical images (3-D chest CT scans) for Covid-19 detection. Our approach includes a combination of vision-language models that segment the CT scans, which are then fed to a deep neural architecture, named RACNet, for Covid-19 detection. In particular, a novel framework, named SAM2CLIP2SAM, is introduced for segmentation that leverages the strengths of both Segment Anything Model (SAM) and Contrastive Language-Image Pre-Training (CLIP) to accurately segment the right and left lungs in CT scans, subsequently feeding these segmented outputs into RACNet for classification of COVID-19 and non-COVID-19 cases. At first, SAM produces multiple part-based segmentation masks for each slice in the CT scan; then CLIP selects only the masks that are associated with the regions of interest (ROIs), i.e., the right and left lungs; finally SAM is given these ROIs as prompts and generates the final segmentation mask for the lungs. Experiments are presented across two Covid-19 annotated databases which illustrate the improved performance obtained when our method has been used for segmentation of the CT scans.
Related papers
- K-SAM: A Prompting Method Using Pretrained U-Net to Improve Zero Shot Performance of SAM on Lung Segmentation in CXR Images [0.0]
We propose an algorithm to improve zero shot performance of SAM on lung region segmentation task by automatic prompt selection.
Our finding indicates that using pretrained models for prompt selection can utilize SAM impressive generalization capability to its full extent.
arXiv Detail & Related papers (2024-10-09T12:37:12Z) - MedCLIP-SAMv2: Towards Universal Text-Driven Medical Image Segmentation [2.2585213273821716]
We introduce MedCLIP-SAMv2, a novel framework that integrates the CLIP and SAM models to perform segmentation on clinical scans.
Our approach includes fine-tuning the BiomedCLIP model with a new Decoupled Hard Negative Noise Contrastive Estimation (DHN-NCE) loss.
We also investigate using zero-shot segmentation labels within a weakly supervised paradigm to enhance segmentation quality further.
arXiv Detail & Related papers (2024-09-28T23:10:37Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
In this study we extended the capabilities of TotalSegmentator to MR images.
We trained an nnU-Net segmentation algorithm on this dataset and calculated similarity coefficients (Dice) to evaluate the model's performance.
The model significantly outperformed two other publicly available segmentation models (Dice score 0.824 versus 0.762; p0.001 and 0.762 versus 0.542; p)
arXiv Detail & Related papers (2024-05-29T20:15:54Z) - MedCLIP-SAM: Bridging Text and Image Towards Universal Medical Image Segmentation [2.2585213273821716]
We propose a novel framework, called MedCLIP-SAM, that combines CLIP and SAM models to generate segmentation of clinical scans.
By extensively testing three diverse segmentation tasks and medical image modalities, our proposed framework has demonstrated excellent accuracy.
arXiv Detail & Related papers (2024-03-29T15:59:11Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
We propose I-MedSAM, which leverages the benefits of both continuous representations and SAM to obtain better cross-domain ability and accurate boundary delineation.
Our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods.
arXiv Detail & Related papers (2023-11-28T00:43:52Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - A Deep Ensemble Learning Approach to Lung CT Segmentation for COVID-19
Severity Assessment [0.5512295869673147]
We present a novel deep learning approach to categorical segmentation of lung CTs of COVID-19 patients.
We partition the scans into healthy lung tissues, non-lung regions, and two different, yet visually similar, pathological lung tissues.
The proposed framework achieves competitive results and outstanding generalization capabilities for three COVID-19 datasets.
arXiv Detail & Related papers (2022-07-05T21:28:52Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - CNN Filter Learning from Drawn Markers for the Detection of Suggestive
Signs of COVID-19 in CT Images [58.720142291102135]
We propose a method that does not require either large annotated datasets or backpropagation to estimate the filters of a convolutional neural network (CNN)
For a few CT images, the user draws markers at representative normal and abnormal regions.
The method generates a feature extractor composed of a sequence of convolutional layers, whose kernels are specialized in enhancing regions similar to the marked ones.
arXiv Detail & Related papers (2021-11-16T15:03:42Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.