K-SAM: A Prompting Method Using Pretrained U-Net to Improve Zero Shot Performance of SAM on Lung Segmentation in CXR Images
- URL: http://arxiv.org/abs/2410.06825v1
- Date: Wed, 9 Oct 2024 12:37:12 GMT
- Title: K-SAM: A Prompting Method Using Pretrained U-Net to Improve Zero Shot Performance of SAM on Lung Segmentation in CXR Images
- Authors: Mohamed Deriche, Mohammad Marufur,
- Abstract summary: We propose an algorithm to improve zero shot performance of SAM on lung region segmentation task by automatic prompt selection.
Our finding indicates that using pretrained models for prompt selection can utilize SAM impressive generalization capability to its full extent.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In clinical procedures, precise localization of the target area is an essential step for clinical diagnosis and screening. For many diagnostic applications, lung segmentation of chest X-ray images is an essential first step that significantly reduces the image size to speed up the subsequent analysis. One of the primary difficulties with this task is segmenting the lung regions covered by dense abnormalities also known as opacities due to diseases like pneumonia and tuberculosis. SAM has astonishing generalization capabilities for category agnostic segmentation. In this study we propose an algorithm to improve zero shot performance of SAM on lung region segmentation task by automatic prompt selection. Two separate UNet models were trained, one for predicting lung segments and another for heart segment. Though these predictions lack fine details around the edges, they provide positive and negative points as prompt for SAM. Using proposed prompting method zero shot performance of SAM is evaluated on two benchmark datasets. ViT-l version of the model achieved slightly better performance compared to other two versions, ViTh and ViTb. It yields an average Dice score of 95.5 percent and 94.9 percent on hold out data for two datasets respectively. Though, for most of the images, SAM did outstanding segmentation, its prediction was way off for some of the images. After careful inspection it is found that all of these images either had extreme abnormality or distorted shape. Unlike most of the research performed so far on lung segmentation from CXR images using SAM, this study proposes a fully automated prompt selection process only from the input image. Our finding indicates that using pretrained models for prompt selection can utilize SAM impressive generalization capability to its full extent.
Related papers
- Exploiting the Segment Anything Model (SAM) for Lung Segmentation in Chest X-ray Images [0.8192907805418583]
Segment Anything Model (SAM) is an ambitious tool designed to identify and separate individual objects within a given image through semantic interpretation.
Several researchers began testing the model on medical images to evaluate its performance in this domain.
This work proposes the use of this new technology to evaluate and study chest X-ray images.
arXiv Detail & Related papers (2024-11-05T12:54:01Z) - SAM2CLIP2SAM: Vision Language Model for Segmentation of 3D CT Scans for Covid-19 Detection [16.1664846590467]
This paper presents a new approach for effective segmentation of images that can be integrated into any model and methodology.
Our approach includes a combination of vision-language models that segment the CT scans, which are then fed to a deep neural architecture, named RACNet, for Covid-19 detection.
Experiments are presented across two Covid-19 annotated databases which illustrate the improved performance obtained when our method has been used for segmentation of the CT scans.
arXiv Detail & Related papers (2024-07-22T15:31:18Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
In medical imaging contexts, it is not uncommon for human experts to rectify segmentations of specific test samples after SAM generates its segmentation predictions.
We introduce a novel approach that leverages the advantages of online machine learning to enhance Segment Anything (SA) during test time.
We employ rectified annotations to perform online learning, with the aim of improving the segmentation quality of SA on medical images.
arXiv Detail & Related papers (2024-06-03T03:16:25Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
We propose I-MedSAM, which leverages the benefits of both continuous representations and SAM to obtain better cross-domain ability and accurate boundary delineation.
Our proposed method with only 1.6M trainable parameters outperforms existing methods including discrete and implicit methods.
arXiv Detail & Related papers (2023-11-28T00:43:52Z) - nnSAM: Plug-and-play Segment Anything Model Improves nnUNet Performance [12.169801149021566]
The Segment Anything Model (SAM) has emerged as a versatile tool for image segmentation without specific domain training.
Traditional models like nnUNet perform automatic segmentation during inference but need extensive domain-specific training.
We propose nnSAM, integrating SAM's robust feature extraction with nnUNet's automatic configuration to enhance segmentation accuracy on small datasets.
arXiv Detail & Related papers (2023-09-29T04:26:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) is a foundation model that is intended to segment user-defined objects of interest in an interactive manner.
We evaluate SAM's ability to segment medical images on a collection of 19 medical imaging datasets from various modalities and anatomies.
arXiv Detail & Related papers (2023-04-20T17:50:18Z) - Rethinking Semi-Supervised Medical Image Segmentation: A
Variance-Reduction Perspective [51.70661197256033]
We propose ARCO, a semi-supervised contrastive learning framework with stratified group theory for medical image segmentation.
We first propose building ARCO through the concept of variance-reduced estimation and show that certain variance-reduction techniques are particularly beneficial in pixel/voxel-level segmentation tasks.
We experimentally validate our approaches on eight benchmarks, i.e., five 2D/3D medical and three semantic segmentation datasets, with different label settings.
arXiv Detail & Related papers (2023-02-03T13:50:25Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Cascaded Robust Learning at Imperfect Labels for Chest X-ray
Segmentation [61.09321488002978]
We present a novel cascaded robust learning framework for chest X-ray segmentation with imperfect annotation.
Our model consists of three independent network, which can effectively learn useful information from the peer networks.
Our methods could achieve a significant improvement on the accuracy in segmentation tasks compared to the previous methods.
arXiv Detail & Related papers (2021-04-05T15:50:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.