Enhancing Cell Instance Segmentation in Scanning Electron Microscopy Images via a Deep Contour Closing Operator
- URL: http://arxiv.org/abs/2407.15817v1
- Date: Mon, 22 Jul 2024 17:32:06 GMT
- Title: Enhancing Cell Instance Segmentation in Scanning Electron Microscopy Images via a Deep Contour Closing Operator
- Authors: Florian Robert, Alexia Calovoulos, Laurent Facq, Fanny Decoeur, Etienne Gontier, Christophe F. Grosset, Baudouin Denis de Senneville,
- Abstract summary: This study presents an AI-driven approach for refining cell boundary delineation to improve instance-based cell segmentation in SEM images.
A CNN COp-Net is introduced to address gaps in cell contours, effectively filling in regions with deficient or absent information.
We showcase the efficacy of our approach in augmenting cell boundary precision using both private SEM images from PDX hepatoblastoma tissues and publicly accessible images datasets.
- Score: 0.04568852250743578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurately segmenting and individualizing cells in SEM images is a highly promising technique for elucidating tissue architecture in oncology. While current AI-based methods are effective, errors persist, necessitating time-consuming manual corrections, particularly in areas where the quality of cell contours in the image is poor and requires gap filling. This study presents a novel AI-driven approach for refining cell boundary delineation to improve instance-based cell segmentation in SEM images, also reducing the necessity for residual manual correction. A CNN COp-Net is introduced to address gaps in cell contours, effectively filling in regions with deficient or absent information. The network takes as input cell contour probability maps with potentially inadequate or missing information and outputs corrected cell contour delineations. The lack of training data was addressed by generating low integrity probability maps using a tailored PDE. We showcase the efficacy of our approach in augmenting cell boundary precision using both private SEM images from PDX hepatoblastoma tissues and publicly accessible images datasets. The proposed cell contour closing operator exhibits a notable improvement in tested datasets, achieving respectively close to 50% (private data) and 10% (public data) increase in the accurately-delineated cell proportion compared to state-of-the-art methods. Additionally, the need for manual corrections was significantly reduced, therefore facilitating the overall digitalization process. Our results demonstrate a notable enhancement in the accuracy of cell instance segmentation, particularly in highly challenging regions where image quality compromises the integrity of cell boundaries, necessitating gap filling. Therefore, our work should ultimately facilitate the study of tumour tissue bioarchitecture in onconanotomy field.
Related papers
- Cell as Point: One-Stage Framework for Efficient Cell Tracking [54.19259129722988]
This paper proposes the novel end-to-end CAP framework to achieve efficient and stable cell tracking in one stage.
CAP abandons detection or segmentation stages and simplifies the process by exploiting the correlation among the trajectories of cell points to track cells jointly.
Cap demonstrates strong cell tracking performance while also being 10 to 55 times more efficient than existing methods.
arXiv Detail & Related papers (2024-11-22T10:16:35Z) - Interpretable Embeddings for Segmentation-Free Single-Cell Analysis in Multiplex Imaging [1.8687965482996822]
Multiplex Imaging (MI) enables the simultaneous visualization of multiple biological markers in separate imaging channels at subcellular resolution.
We propose a segmentation-free deep learning approach that leverages grouped convolutions to learn interpretable embedded features from each imaging channel.
arXiv Detail & Related papers (2024-11-02T11:21:33Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Affine-Consistent Transformer for Multi-Class Cell Nuclei Detection [76.11864242047074]
We propose a novel Affine-Consistent Transformer (AC-Former), which directly yields a sequence of nucleus positions.
We introduce an Adaptive Affine Transformer (AAT) module, which can automatically learn the key spatial transformations to warp original images for local network training.
Experimental results demonstrate that the proposed method significantly outperforms existing state-of-the-art algorithms on various benchmarks.
arXiv Detail & Related papers (2023-10-22T02:27:02Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Advanced Multi-Microscopic Views Cell Semi-supervised Segmentation [0.0]
Deep learning (DL) shows powerful potential in cell segmentation tasks, but suffers from poor generalization.
In this paper, we introduce a novel semi-supervised cell segmentation method called Multi-Microscopic-view Cell semi-supervised (MMCS)
MMCS can train cell segmentation models utilizing less labeled multi-posture cell images with different microscopy well.
It achieves an F1-score of 0.8239 and the running time for all cases is within the time tolerance.
arXiv Detail & Related papers (2023-03-21T08:08:13Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Accurate Cell Segmentation in Digital Pathology Images via Attention
Enforced Networks [0.0]
We propose an Attention Enforced Network (AENet) to integrate local features with global dependencies and weight effective channels adaptively.
In the test stage, we present an individual color normalization method to deal with the stain variation problem.
arXiv Detail & Related papers (2020-12-14T03:39:33Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Deeply-Supervised Density Regression for Automatic Cell Counting in
Microscopy Images [9.392002197101965]
We propose a new density regression-based method for automatically counting cells in microscopy images.
The proposed method processes two innovations compared to other state-of-the-art regression-based methods.
Experimental studies evaluated on four datasets demonstrate the superior performance of the proposed method.
arXiv Detail & Related papers (2020-11-07T04:02:47Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.