論文の概要: Mini-Sequence Transformer: Optimizing Intermediate Memory for Long Sequences Training
- arxiv url: http://arxiv.org/abs/2407.15892v3
- Date: Thu, 31 Oct 2024 16:36:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 15:45:25.595087
- Title: Mini-Sequence Transformer: Optimizing Intermediate Memory for Long Sequences Training
- Title(参考訳): Mini-Sequence Transformer:ロングシーケンストレーニングにおける中間記憶の最適化
- Authors: Cheng Luo, Jiawei Zhao, Zhuoming Chen, Beidi Chen, Anima Anandkumar,
- Abstract要約: ミニシーケンス変換器(Mini-Sequence Transformer, MsT)は、非常に長いシーケンスを持つ高速かつ高精度なLLMトレーニング手法である。
MsTは入力シーケンスを分割し、中間メモリ使用量を減らすためにミニシーケンスを反復的に処理する。
huggingfaceライブラリと統合され、MsTはQwen、Mistral、Gemma-2の最大コンテキスト長を12-24倍に拡張した。
- 参考スコア(独自算出の注目度): 78.93900796545523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Mini-Sequence Transformer (MsT), a simple and effective methodology for highly efficient and accurate LLM training with extremely long sequences. MsT partitions input sequences and iteratively processes mini-sequences to reduce intermediate memory usage. Integrated with activation recomputation, it enables significant memory savings in both forward and backward passes. In experiments with the Llama3-8B model, with MsT, we measure no degradation in throughput or convergence even with 12x longer sequences than standard implementations. MsT is fully general, implementation-agnostic, and requires minimal code changes to integrate with existing LLM training frameworks. Integrated with the huggingface library, MsT successfully extends the maximum context length of Qwen, Mistral, and Gemma-2 by 12-24x.
- Abstract(参考訳): 超高速かつ高精度なLLM学習法であるMini-Sequence Transformer (MsT)を導入する。
MsTは入力シーケンスを分割し、中間メモリ使用量を減らすためにミニシーケンスを反復的に処理する。
アクティベーション再計算と統合され、前方パスと後方パスの両方で大きなメモリ節約を可能にする。
MsTを用いたLlama3-8Bモデルによる実験では、標準的な実装よりも12倍長いシーケンスであっても、スループットや収束の劣化は測定されない。
MsTは完全に汎用的で実装に依存しないため、既存のLLMトレーニングフレームワークとの統合には最小限のコード変更が必要である。
ハグフェイスライブラリと統合され、MsTはQwen、Mistral、Gemma-2の最大コンテキスト長を12-24倍に拡張した。
関連論文リスト
- LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
キーバリュー(KV)キャッシュは、トランスフォーマーベースの自己回帰型大言語モデル(LLM)を提供する上で重要なコンポーネントである。
この問題を緩和するためのアプローチとしては、(1) アップサイクルステージに統合された効率的な注意変動、(2) テスト時のKVキャッシュ圧縮、(3) テスト時のKVキャッシュ圧縮がある。
そこで我々は,KV重み行列の低ランク近似を提案し,モデル再学習なしに既存のトランスフォーマーベースLCMとのプラグイン統合を実現する。
本手法は,テスト段階におけるアップサイクリング段階のモデルチューニングやタスク固有のプロファイリングを伴わずに機能するように設計されている。
論文 参考訳(メタデータ) (2024-10-04T03:10:53Z) - Efficiently Training 7B LLM with 1 Million Sequence Length on 8 GPUs [24.066283519769968]
大規模言語モデル(LLM)は、よりクリエイティブなアプリケーションを促進するために、拡張コンテキスト長を使用して訓練されている。
本稿では,メモリ管理を微粒化するための新しいフレームワークであるMEMOを提案する。
我々は,MEMOがMegatron-LMやDeepSpeedと比較して平均2.42倍,2.26倍のMFUを達成することを示す。
論文 参考訳(メタデータ) (2024-07-16T18:59:49Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Hierarchical Context Merging: Better Long Context Understanding for Pre-trained LLMs [61.40047491337793]
本稿では,大規模言語モデルの制約を克服する新しいトレーニングフリースキームである階層型cOntext MERging(HOMER)を提案する。
HomeRは、長いインプットを管理可能なチャンクに分割する、分別/対数アルゴリズムを使用する。
トークン削減技術がマージ毎に先行し、メモリ使用効率が保証される。
論文 参考訳(メタデータ) (2024-04-16T06:34:08Z) - Variance-reduced Zeroth-Order Methods for Fine-Tuning Language Models [17.027512781038617]
Zeroth-order (ZO) 最適化手法は、メモリ効率の高いフォワードパスを推定に利用することができる。
ZO-SGDの適応であるMeZOは、ゼロショット学習とインコンテキスト学習を一貫して上回ることが示されている。
MeZO-SVRGは1次SGDに比べてメモリフットプリントが大幅に削減される。
論文 参考訳(メタデータ) (2024-04-11T18:35:49Z) - InfLLM: Training-Free Long-Context Extrapolation for LLMs with an Efficient Context Memory [93.20588235940453]
本稿では,トレーニング不要なメモリベースのInfLLMを提案する。
InfLLMは、リモートコンテキストを追加のメモリユニットに格納し、トークン関連ユニットを注目するために効率的なメカニズムを使用する。
シーケンス長が$1,024$Kにスケールしても、InfLLMは依然として、長距離依存関係を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-02-07T06:50:42Z) - Ultra-Long Sequence Distributed Transformer [10.263668150008316]
長いシーケンスで訓練されたトランスフォーマーモデルは、しばしば短いシーケンスよりも高い精度を達成する。
既存のロングシーケンストレーニングの方法は、制限されたスピードアップとメモリ削減を提供する。
本稿では,新しい分散学習手法であるLong Short-Sequence Transformerを提案する。
論文 参考訳(メタデータ) (2023-11-04T11:38:53Z) - DeepSpeed Ulysses: System Optimizations for Enabling Training of Extreme
Long Sequence Transformer Models [34.74093040678323]
我々は,高度に効率的かつスケーラブルなLDMトレーニングを実現するための,新しい,ポータブルで効果的な方法論であるDeepSpeed-Ulyssesを紹介した。
DeepSpeed-Ulyssesは、そのコアでシーケンス次元に沿って入力データを分割し、効率的なオール・ツー・オールの集合通信を用いて注意を払っている。
実験の結果、DeepSpeed-Ulyssesは既存のSOTAベースラインの4倍のシーケンス長で2.5倍高速であることがわかった。
論文 参考訳(メタデータ) (2023-09-25T20:15:57Z) - Blockwise Parallel Transformer for Large Context Models [70.97386897478238]
Blockwise Parallel Transformer (BPT) は、メモリコストを最小限に抑えるために、自己アテンションとフィードフォワードネットワーク融合のブロックワイズ計算である。
メモリ効率を維持しながら、長い入力シーケンスを処理することにより、BPTはバニラ変換器の32倍、以前のメモリ効率の4倍のトレーニングシーケンスを可能にする。
論文 参考訳(メタデータ) (2023-05-30T19:25:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。