論文の概要: A Survey of Explainable Artificial Intelligence (XAI) in Financial Time Series Forecasting
- arxiv url: http://arxiv.org/abs/2407.15909v1
- Date: Mon, 22 Jul 2024 17:06:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 21:34:58.506742
- Title: A Survey of Explainable Artificial Intelligence (XAI) in Financial Time Series Forecasting
- Title(参考訳): 金融時系列予測における説明可能な人工知能(XAI)の検討
- Authors: Pierre-Daniel Arsenault, Shengrui Wang, Jean-Marc Patenande,
- Abstract要約: eXplainable AI(XAI)の分野は、AIモデルをより理解しやすくすることを目指している。
本稿では、金融時系列を予測するXAIアプローチを分類する。
金融におけるXAIの現在の役割を包括的に把握している。
- 参考スコア(独自算出の注目度): 1.2937020918620652
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence (AI) models have reached a very significant level of accuracy. While their superior performance offers considerable benefits, their inherent complexity often decreases human trust, which slows their application in high-risk decision-making domains, such as finance. The field of eXplainable AI (XAI) seeks to bridge this gap, aiming to make AI models more understandable. This survey, focusing on published work from the past five years, categorizes XAI approaches that predict financial time series. In this paper, explainability and interpretability are distinguished, emphasizing the need to treat these concepts separately as they are not applied the same way in practice. Through clear definitions, a rigorous taxonomy of XAI approaches, a complementary characterization, and examples of XAI's application in the finance industry, this paper provides a comprehensive view of XAI's current role in finance. It can also serve as a guide for selecting the most appropriate XAI approach for future applications.
- Abstract(参考訳): 人工知能(AI)モデルは非常に高い精度に達している。
優れたパフォーマンスは大きな利益をもたらすが、その固有の複雑さは、しばしば人間の信頼を低下させ、金融のようなリスクの高い意思決定領域への適用を遅らせる。
eXplainable AI(XAI)の分野は、AIモデルをより理解しやすくすることを目的として、このギャップを埋めようとしている。
この調査は過去5年間の成果を中心に、金融時系列を予測するXAIアプローチを分類している。
本稿では,これらの概念を個別に扱う必要性を強調し,説明可能性と解釈可能性の区別を行う。
明確な定義、XAIアプローチの厳密な分類、補完的な特徴、金融業界におけるXAIの適用例を通じて、本論文は、金融におけるXAIの現在の役割を包括的に考察する。
また、将来のアプリケーションに最適なXAIアプローチを選択するためのガイドとしても機能する。
関連論文リスト
- Explainable Artificial Intelligence: A Survey of Needs, Techniques, Applications, and Future Direction [5.417632175667161]
説明可能な人工知能(XAI)は、これらのモデルがどのように意思決定や予測を行うかを説明することによって、課題に対処する。
既存の研究では、XAIの基本概念、その一般的原理、およびXAI技術の範囲について検討されている。
本稿では、共通用語と定義、XAIの必要性、XAIの受益者の必要性、XAI手法の分類、および異なる応用分野におけるXAI手法の適用に関する総合的な文献レビューを提供する。
論文 参考訳(メタデータ) (2024-08-30T21:42:17Z) - Usable XAI: 10 Strategies Towards Exploiting Explainability in the LLM Era [77.174117675196]
XAIはLarge Language Models (LLM)に拡張されている
本稿では,XAIがLLMやAIシステムにどのようなメリットをもたらすかを分析する。
10の戦略を導入し、それぞれに重要なテクニックを導入し、関連する課題について議論します。
論文 参考訳(メタデータ) (2024-03-13T20:25:27Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - A Hypothesis on Good Practices for AI-based Systems for Financial Time
Series Forecasting: Towards Domain-Driven XAI Methods [0.0]
機械学習とディープラーニングは、財務予測や予測タスクでますます普及している。
これらのモデルは透明性と解釈可能性に欠けることが多く、金融のような繊細なドメインでの使用を困難にしている。
本稿では、金融のためのAIベースのシステムに説明可能性を展開するための優れた実践について考察する。
論文 参考訳(メタデータ) (2023-11-13T17:56:45Z) - A Time Series Approach to Explainability for Neural Nets with
Applications to Risk-Management and Fraud Detection [0.0]
技術に対する信頼は、予測の背後にある根拠を理解することによって実現される。
横断的なデータの場合、古典的なXAIアプローチはモデルの内部動作に関する貴重な洞察をもたらす可能性がある。
本稿では、データの自然時間順序を保存・活用する深層学習のための新しいXAI手法を提案する。
論文 参考訳(メタデータ) (2022-12-06T12:04:01Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Explainable Artificial Intelligence (XAI) for Internet of Things: A
Survey [1.7205106391379026]
人工知能(AI)モデルのブラックボックスの性質は、ユーザーがそのようなモデルによって生成された出力を理解し、時には信頼することを許さない。
結果だけでなく、結果への決定パスも重要なAIアプリケーションでは、このようなブラックボックスAIモデルは不十分である。
説明可能な人工知能(XAI)は、この問題に対処し、ユーザによって解釈される一連のAIモデルを定義する。
論文 参考訳(メタデータ) (2022-06-07T08:22:30Z) - Beyond Explaining: Opportunities and Challenges of XAI-Based Model
Improvement [75.00655434905417]
説明可能な人工知能(XAI)は、高度に複雑な機械学習(ML)モデルに透明性をもたらす新たな研究分野である。
本稿では,機械学習モデルの諸特性を改善するために,XAIを実用的に応用する手法を概観する。
実験では,モデル一般化能力や推論などの特性を改善する上で,説明がどのように役立つのかを,おもちゃと現実的な設定で実証的に示す。
論文 参考訳(メタデータ) (2022-03-15T15:44:28Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - XAI Methods for Neural Time Series Classification: A Brief Review [0.0]
時系列分類タスクのための深層学習ブラックボックスの開き方に着目し,eXplainable AI(XAI)手法の現状について検討する。
我々の貢献は、将来的な仕事の方向性を導き、時系列データに基づく深層学習のためのXAIを前進させることも目的としている。
論文 参考訳(メタデータ) (2021-08-18T07:26:19Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。